The role of gonadal steroids in sexual differentiation of the central nervous system (CNS) is well established in rodents, but no study to date has manipulated androgens prenatally and examined their effects on any CNS structure in a primate. Onuf's nucleus is a column of motoneurons in the sacral spinal cord that innervates the striated perineal muscles. This cell group is larger in males than in females of many species, due to androgens acting during a sensitive perinatal period. Here, we examined Onuf's nucleus in 21 adult rhesus monkeys, including control males and females, as well as males whose mothers had been treated with an anti-androgen or testosterone during gestation. We found a robust sex difference, with more motoneurons in control males than in females. The soma size of Onuf's nucleus motoneurons was also marginally larger in males. Treatment with the anti-androgen flutamide for 35-40 days during early gestation partially blocked masculinization of Onuf's nucleus: motoneuron number in flutamide-treated males was decreased relative to control and testosterone-treated males, but remained greater than in females, with no effect on cell size. A control motor nucleus that innervates foot muscles (Pes9) showed no difference in motoneuron number or size between control males and females. Prenatal testosterone treatment of males did not alter Onuf's nucleus motoneuron number, but did increase the size of both Onuf's and Pes9 motoneurons. Thus, prenatal androgen manipulations cause cellular-level changes in the primate CNS, which may underlie previously observed effects of these manipulations on behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084473PMC
http://dx.doi.org/10.1016/j.yhbeh.2018.03.003DOI Listing

Publication Analysis

Top Keywords

onuf's nucleus
24
males females
16
control males
12
motoneuron number
12
males
9
prenatal androgen
8
androgen manipulations
8
larger males
8
size onuf's
8
nucleus motoneuron
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!