What is the Best Biological Process for Nitrogen Removal: When and Why?

Environ Sci Technol

Department of Civil and Environmental Engineering , Stanford University, 473 Via Ortega, Room 259 , Stanford , California 94305 , United States.

Published: April 2018

AI Article Synopsis

  • Various biological processes exist for transforming organics and removing nitrogen from domestic wastewater, with anammox being a newer approach that offers reduced oxygen needs compared to traditional nitrification/denitrification.
  • While anammox has its advantages, treatment methods can differ, and in certain cases, the benefits may not be consistent.
  • Factors like wastewater composition, regulatory demands, and treatment schematics can influence the effectiveness of each method, leading to a comparison of their stoichiometry and potential for research advancements.

Article Abstract

Many different aerobic and anaerobic biological processes and treatment schemes are available for transforming organics and/or removing nitrogen from domestic wastewaters. Significant reductions in oxygen requirements and absence of a need for organics for nitrogen reduction are often indicated as advantageous for using the newer anammox organism approach for nitrogen removal rather than the traditional nitrification/denitrification method, the most common one in use today. However, treatment schemes differ, and there are some in which such suggested advantages may not hold. When nitrification/denitrification is used, an anoxic tank is now commonly used first and the nitrate formed by nitrification later is recycled back to that tank for oxidation of wastewater organics. This greatly reduces oxygen requirements and the need for adding organics. So when are such claims correct and when not? What factors in wastewater composition, regulatory requirements, and treatment flow sheet alter which treatment process is best to use? As an aid in making such judgments under different circumstances, the stoichiometry of the different biological processes involved and the different treatment approaches used were determined and compared. Advantages of each as well as imitations and potential opportunities for research to prevent them are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b05832DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
8
biological processes
8
treatment schemes
8
oxygen requirements
8
treatment
5
best biological
4
biological process
4
nitrogen
4
process nitrogen
4
removal why?
4

Similar Publications

Effect of doping in TiO/chitosan composite on adsorptive-photocatalytic removal of gallic acid from water.

Chemosphere

January 2025

Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:

Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.

View Article and Find Full Text PDF

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance.

View Article and Find Full Text PDF

The deammonification process is an efficient alternative to remove nitrogen from wastewater with a low carbon/nitrogen ratio. However, the reactor configuration and operational factors pose challenges for applications in treatment systems to remove nitrogen from municipal and industrial wastewater on a large scale. To address this gap, this study evaluated a new deammonification strategy using a single-stage membrane aerated biofilm reactor (MABR), operated with continuous flow, under different hydraulic retention times (HRT) in the post-treatment of poultry slaughterhouse wastewater with a low nitrogen load, similar to domestic wastewater.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!