Progress on the Studies of the Key Enzymes of Ginsenoside Biosynthesis.

Molecules

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China.

Published: March 2018

As the main bioactive constituents of species, ginsenosides possess a wide range of notable medicinal effects such as anti-cancer, anti-oxidative, antiaging, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, the increasing medical demand for ginsenosides cannot be met due to the limited resource of species and the low contents of ginsenosides. In recent years, biotechnological approaches have been utilized to increase the production of ginsenosides by regulating the key enzymes of ginsenoside biosynthesis, while synthetic biology strategies have been adopted to produce ginsenosides by introducing these genes into yeast. This review summarizes the latest research progress on cloning and functional characterization of key genes dedicated to the production of ginsenosides, which not only lays the foundation for their application in plant engineering, but also provides the building blocks for the production of ginsenosides by synthetic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017814PMC
http://dx.doi.org/10.3390/molecules23030589DOI Listing

Publication Analysis

Top Keywords

production ginsenosides
12
key enzymes
8
enzymes ginsenoside
8
ginsenoside biosynthesis
8
synthetic biology
8
ginsenosides
7
progress studies
4
studies key
4
biosynthesis main
4
main bioactive
4

Similar Publications

Genome-Wide Identification and Characterization of Gene Family in (Cucurbitaceae).

Life (Basel)

December 2024

Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.

is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.

View Article and Find Full Text PDF

Changes in Ginsenoside Composition, Antioxidant Activity and Anti-Inflammatory Activity of Ginseng Berry by Puffing.

Foods

December 2024

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.

The effects of puffing on the ginsenoside composition as well as antioxidant and anti-inflammatory activities of ginseng berry were investigated to increase the utilization of ginseng berry. There was no significant difference in extraction yield between the control and puffed samples at all moisture contents and pressure conditions ( < 0.05).

View Article and Find Full Text PDF

Despite the rapid advancement of glycosidase biotechnology, ginsenoside-transforming rhamnosidases remain underexplored due to a lack of research. In this study, we aimed to bridge this gap by evaluating eight putative rhamnosidases for their ability to transform ginsenosides. Among them, a novel rhamnosidase (C118) from was identified as being efficient at hydrolyzing ginsenoside Re.

View Article and Find Full Text PDF

Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases.

Pharmacol Res

January 2025

Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China. Electronic address:

Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!