Lipid metabolism is closely involved with signal transduction and energy homeostasis. Excess calorie intake causes abnormal lipid metabolism, promoting obesity and insulin resistance. Diacylglycerol (DG) represents not only a lipidic second messenger but also an intermediate metabolite for triglyceride metabolism in the endoplasmic reticulum (ER). However, it remains undetermined how the roles of DG in signaling and energy homeostasis is regulated within the cell. Of DG kinases (DGKs), which are enzymes that phosphorylate DG, DGKε resides in the ER. This study examined how DGKε is implicated in signal transduction and lipid homeostasis. DGKε-deficient mice were fed a high-fat diet (HFD) for 40 d. We observed that DGKε deficiency promotes fat accumulation in adipocytes and subsequently promotes insulin resistance in mice fed an HFD. This abnormal fat metabolism is mediated by down-regulation of lipolytic activities, such as adipose triglyceride lipase and hormone-sensitive lipase. In addition, activation of DG-sensitive PKC leads to insulin resistance in adipose tissue, which may be caused by delayed metabolism of DG. Our data suggest that DGKε links the second messenger signaling system to energy homeostasis in adipocytes and that its deficiency results in abnormal lipid metabolism such as obesity and insulin resistance.-Nakano, T., Seino, K., Wakabayashi, I., Stafforini, D. M., Topham, M. K., Goto, K. Deletion of diacylglycerol kinase ε confers susceptibility to obesity via reduced lipolytic activity in murine adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201701050RDOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
energy homeostasis
12
insulin resistance
12
deletion diacylglycerol
8
diacylglycerol kinase
8
kinase confers
8
confers susceptibility
8
susceptibility obesity
8
obesity reduced
8
reduced lipolytic
8

Similar Publications

In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.

View Article and Find Full Text PDF

Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear.

View Article and Find Full Text PDF

Background: Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited.

Purpose: This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling.

View Article and Find Full Text PDF

Objective: To study the subcutaneous adipose tissue (SAT) transcriptome in people with HIV (PWH) switching efavirenz (EFV) or a protease inhibitor (PI) to raltegravir and to compare the transcriptome of PWH to those of people without HIV (PWoH).

Design: PWH (n = 36) on EFV (n = 22) or a PI (n = 14) based ART regimen were randomized to switch to RAL (n = 15) or to continue unchanged medication (n = 17). PWoH (n = 10), comparable in age and body mass index, were included for comparison.

View Article and Find Full Text PDF

Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!