Radiofrequency electromagnetic fields (RF-EMF) are a basic requirement of modern wireless communication technology. Statutory thresholds of RF-EMF are established to limit relevant additional heat supply in human tissue. Nevertheless, to date, questions concerning nonthermal biological effects have yet to be fully addressed. New versions of microarrays (8 × 60K v2) provide a higher resolution of whole genome gene expression to display adaptive processes in cells after irradiation. In this ex vivo/ in vitro study, we irradiated peripheral blood cells from five donors with a continuous wave of 900 MHz RF-EMF for 0, 30, 60 and 90 min. Gene expression changes ( P ≤ 0.05 and ≥twofold differences above or below the room temperature control exposed samples) were evaluated with microarray analysis. The results were compared with data from room temperature + 2°C samples. Verification of microarray results was performed using bioinformatic analyses and qRT-PCR. We registered a lack of an EMF-specific gene expression response after applying the false discovery rate adjustment (FDR), using a high-stringency approach. Low-stringency analysis revealed 483 statistically significant deregulated transcripts in all RF-EMF groups relative to the room temperature exposed samples without an association with their corresponding room temperature + 2°C controls. Nevertheless, these transcripts must be regarded as statistical artefacts due to the absence of a targeted biological response, including enrichment and network analyses administered to microarray expressed gene subset profiles. Correspondingly, 14 most promising candidate transcripts examined by qRT-PCR displayed an absence of correlation with respect to the microarray results. In conclusion, these findings indicate that 900 MHz EMF exposure establishing an average specific absorption rate of 9.3 W/kg to whole blood cells is insufficient to induce nonthermal effects in gene expression during short-time exposure up to 90 min.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR14909.1 | DOI Listing |
Adv Sci (Weinh)
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
January 2025
Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
Phoronida is a small group of marine animals, most of which are characterized by a long larval period and complex metamorphosis. As a result of metamorphosis, their body changes so much that their true anterior and posterior ends are very close to each other, and the intestine becomes long and U-shaped. Using histology and electron microscopy, we have shown that the elongation and change in shape of the digestive tract that occurs during metamorphosis in Phoronopsis harmeri larvae is accompanied by the formation of new parts and changes in ultrastructure.
View Article and Find Full Text PDFGenes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFCirc Res
January 2025
British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).
Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.
Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.
J Pharm Anal
December 2024
Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou, 310020, China.
Diabetes mellitus (DM) is a major metabolic disease endangering global health, with diabetic nephropathy (DN) as a primary complication lacking curative therapy. Sporoderm-broken spores of (GLP), an herbal medicine, has been used for the treatment of metabolic disorders. In this study, DN was induced in Sprague-Dawley rats using streptozotocin (STZ) and a high-fat diet (HFD), and the protective mechanisms of GLP were investigated through transcriptomic, metabolomic, and network pharmacology (NP) analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!