The biological outcome of nitric oxide (NO) and reactive nitrogen species (RNS) in regulating pro survival and pro death autophagic pathways still demand further investigation. In the present study, we investigated the effect of nitrosative stress in K562 cells using NO donor compound DETA-NONOate, peroxynitrite, and SIN-1. Exposure to NO, peroxynitrite, and SIN-1 caused decrease in K562 cell survival. NO induced autophagy but not apoptosis or necrosis in K562 cells. In contrast, peroxynitrite and SIN-1 treatment induced apoptosis in K562 cells. Surprisingly, inhibition of autophagic response using 3-methyladenine led to the induction of apoptosis in K562 cells. Increase in 5'adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was only observed in the presence of NO donor indicated that AMPK was crucial to induce autophagy in K562 cells. We for the first time discovered a novel role of p73 in autophagy induction under nitrosative stress in K562 cells. TAp73α was only induced upon exposure to NO but not in the presence of peroxynitrite. Reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio remained unaltered upon NO exposure. Our data suggest a complex network of interaction and cross regulations between NO and p73. These data open a new path for therapies based on the abilities of RNS to induce autophagy-mediated cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715762.2018.1449210 | DOI Listing |
Anal Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy.
: Treatment with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) has revolutionized disease management and has transformed CML from a life-threatening disease to a chronic condition for many patients. However, overcoming resistance, particularly related to leukemic stem cells (LSC) that can persist even when the bulk of the leukemic cells are eliminated, remains a significant challenge. : K562 and KU812 cell lines were treated in vitro with the TKI Imatinib (IM).
View Article and Find Full Text PDFMolecules
January 2025
Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
The Compendium of Materia Medica highlights the therapeutic properties of (). In this study, the species and content of volatile components, inorganic elements, and amino acids were measured, and the activity of crude extracts of ethanol and water was studied. GC-MS analysis revealed 37-53 components across different life stages, excluding excessive heavy metals and containing essential trace elements.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!