The Ley-Griffith tetra-n-propylammonium perruthenate (TPAP) catalyst has been widely deployed by the synthesis community, mainly for the oxidation of alcohols to aldehydes and ketones, but also for a variety of other synthetic transformations (e.g. diol cleavage, isomerizations, imine formation and heterocyclic synthesis). Such popularity has been forged on broad reaction scope, functional group tolerance, mild conditions, and commercial catalyst supply. However, the mild instability of TPAP creates preparation, storage, and reaction reproducibility issues, due to unpreventable slow decomposition. In search of attributes conducive to catalyst longevity an extensive range of novel perruthenate salts were prepared. Subsequent evaluation unearthed a set of readily synthesized, bench stable, phosphonium perruthenates (ATP3 and MTP3) that mirror the reactivity of TPAP, but avoid storage decomposition issues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201800531DOI Listing

Publication Analysis

Top Keywords

atp3 mtp3
8
perruthenate salts
8
mtp3 easily
4
easily prepared
4
prepared stable
4
stable perruthenate
4
salts oxidation
4
oxidation applications
4
applications synthesis
4
synthesis ley-griffith
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!