Activation of Nrf2 Pathway Contributes to Neuroprotection by the Dietary Flavonoid Tiliroside.

Mol Neurobiol

Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.

Published: October 2018

Hyperactivated microglia plays a key role in regulating neuroinflammatory responses which cause damage to neurons. In recent years, substantial attention has been paid in identifying new strategies to abrogate neuroinflammation. Tiliroside, a natural dietary glycosidic flavonoid, is known to inhibit neuroinflammation. This study was aimed at investigating the molecular mechanisms involved in the inhibition of neuroinflammation and neurotoxicity by tiliroside. The effects of tiliroside on Nrf2 and SIRT1 activities in BV2 microglia and HT22 hippocampal neurons were investigated using immunoblotting and DNA binding assays. The roles of Nrf2 and SIRT1 in the anti-inflammatory activity of tiliroside were further investigated using RNA interference experiments. HT22 neuronal viability was determined by XTT, calcium influx, DNA fragmentation assays. The effect of tiliroside on MAP2 protein expression in HT22 neurons was investigated using western blotting and immunofluorescence. We also studied the impact of tiliroside on DNA fragmentation and ROS generation in APPSwe-transfected 3D neuronal stem cells. Results show that tiliroside increased protein levels of Nrf2, HO-1 and NQO1, indicating an activation of the Nrf2 protective mechanisms in the microglia. Furthermore, transfection of BV2 cells with Nrf2 siRNA resulted in the loss of anti-inflammatory activity by tiliroside. Tiliroside reduced protein levels of acetylated-NF-κB-p65, and increased SIRT1 in LPS/IFNγ-activated BV2 microglia. RNAi experiments revealed that inhibition of neuroinflammation by tiliroside was not affected by silencing SIRT1 gene. Results of neurotoxicity experiments revealed that neuroinflammation-induced toxicity, DNA fragmentation, ROS generation and calcium accumulation in HT22 neurons were significantly reduced by tiliroside treatment. In addition, the compound also protected differentiated human neural progenitor cells by blocking ROS generation and DNA fragmentation. Overall, this study has established that tiliroside protected BV2 microglia from LPS/IFNγ-induced neuroinflammation and HT22 neuronal toxicity by targeting Nrf2 antioxidant mechanisms. The compound also produced inhibition of NF-κB acetylation through activation of SIRT1, as well as increasing SIRT1 activity in mouse hippocampal neurons. Results from this study have further established the mechanisms involved in the anti-neuroinflammatory and neuroprotective activities of tiliroside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6132780PMC
http://dx.doi.org/10.1007/s12035-018-0975-2DOI Listing

Publication Analysis

Top Keywords

dna fragmentation
16
tiliroside
14
bv2 microglia
12
ros generation
12
activation nrf2
8
neuroinflammation tiliroside
8
mechanisms involved
8
inhibition neuroinflammation
8
nrf2 sirt1
8
hippocampal neurons
8

Similar Publications

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.

View Article and Find Full Text PDF

Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence.

View Article and Find Full Text PDF

Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS.

View Article and Find Full Text PDF

Recently, the World Health Organization recommendation for abstinence time for semen analysis has been challenged in some studies and many of them have supported the advantages of a second short abstinence ejaculation. More evidence is needed to approve this for clinical use. This study aimed to compare the average routine abstinence time (2-7 days) with the short time (1-2 h) on sperm quality based on functional parameters in a population of oligo-astheno-teratozoospermia (OAT) men.

View Article and Find Full Text PDF

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!