Purpose: This study was performed to investigate the expression pattern of Wnt inhibitory factor 1 (Wif1) and β-catenin during anorectal development in normal and anorectal malformation (ARM) embryos and the possible role of Wif1 and β-catenin in the pathogenesis of ARM.
Methods: ARM was induced with ethylenethiourea on the 10th gestational day in rat embryos. Cesarean deliveries were performed to harvest the embryos. The expression pattern of Wif1 and β-catenin protein and mRNA was evaluated in normal rat embryos ( = 288) and ARM rat embryos ( = 306) from GD13 to GD16 using immunohistochemical staining, Western blot, and real time RT-PCR.
Results: Immunohistochemical staining revealed that in normal embryos Wif1 was constantly expressed in the cloaca from GD13 to GD16. On GD13 and GD14, Wif1-immunopositive cells were extensively expressed in the cloaca. On GD15, the expression of Wif1 were mainly detected on the very thin anal membrane. In ARM embryos, the epithelium of the hindgut and urorectal septum demonstrated faint immunostaining for Wif1 from GD14 to GD16. Western blot and real time RT-PCR revealed that Wif1 and β-catenin protein and mRNA expression level was significantly decreased in the ARM groups compared with the normal group on GD14 and GD15 ( < 0.05).
Conclusions: This study demonstrated that the expression pattern of Wif1 and β-catenin was disrupted in ARM embryos during anorectal morphogenesis, which demonstrated that downregulation of Wif1 and β-catenin at the time of cloacal separation into the primitive rectum and urogenital septum might related to the development of ARM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836566 | PMC |
http://dx.doi.org/10.7717/peerj.4445 | DOI Listing |
Anim Genet
February 2025
Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China.
The Beigang pig was recently identified as one of the endangered breeds during a Chinese indigenous pig genetic resource survey. The Beigang breed is notable for its remarkable roughage tolerance and high reproductive capacity according to historical records. Morphologically, the Beigang pig resembles many indigenous pigs in eastern China, especially in its large ears.
View Article and Find Full Text PDFDevelopment
January 2025
Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, and Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study, we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Rheumatology and Immunology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China.
The risk of lung cancer is significantly increased in patients with systemic sclerosis (SSc), yet the specific genes underlying this association remain unexplored. Our study aims to identify genes shared by SSc and lung cancer. We identified differentially expressed genes (DEGs) from SSc and lung adenocarcinoma (LUAD) datasets (SSc: GSE95065, LUAD: GSE136043) in the GEO database.
View Article and Find Full Text PDFTransl Androl Urol
November 2024
Department of Urology, Second People's Hospital of China Three Gorges University, Yichang, China.
Background And Objective: Prostate cancer is a major cause of cancer-related morbidity and mortality in men globally. The pathogenesis involves complex interactions between genetic mutations and environmental factors, activating multiple signaling pathways, especially Wnt/β-catenin, PI3K/Akt, and NF-κB pathways. Tumor suppressor genes and are key inhibitors of these pathways, crucial in suppressing tumor growth and metastasis.
View Article and Find Full Text PDFBiomol Biomed
November 2024
School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
The Wnt signaling pathway is one of the most important and critical signaling pathways for maintaining cellular functions, such as cell proliferation and differentiation. Increasing evidence substantiates that the Wnt signaling pathway also plays a significant role in the regulation of bone formation in osteoporosis. Accordingly, inhibitors of this pathway, such as sclerostin, Dickkopf-1 (DKK1), WNT inhibitory factor 1 (WIF1), and secreted frizzled-related proteins (SFRPs), have a negative regulatory role in bone formation and may serve as effective therapeutic targets for osteoporosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!