Background: Malignant mesothelioma is an invasive neoplasm arising from mesothelial surfaces of the pleural and peritoneal cavities. Mesothelioma treatment is unsatisfactory and recurrence is common. Here an innovative locoregional treatment for malignant pleural mesothelioma is presented.

Methods: Chitosan- and hyaluronate-based films were loaded with 0.5% and 4% w/w cisplatin and were studied for their physicochemical, mechanical and drug release characteristics. The performance of the drug delivery systems was assessed on A549 cells and on an orthotopic model of MPM recurrence in rats.

Results: Polysaccharide films produced were thin, flexible and resistant. Cisplatin was completely released from hyaluronic acid films within 96 hours, while drug release was found to be much more prolonged with chitosan films. The drug released from hyaluronate films was effective against A549 cell line, while for chitosan films the release was too slow to produce cytotoxicity. Similarly, cisplatin-loaded chitosan films released minimal quantities of cisplatin and induced inflammation and foreign body reaction. Cisplatin-loaded hyaluronate acid films on the contrary were able to prevent tumor recurrence. The cisplatin-loaded hyaluronate films provided higher C and AUC compared to a solution of cisplatin administered intrapleurally, but did not show any sign of treatment related toxicity.

Conclusions: Hyaluronate-based films appear as an optimal platform for the development of drug delivery systems suitable for the loco-regional post-surgical treatment of lung malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830560PMC
http://dx.doi.org/10.21037/jtd.2017.10.12DOI Listing

Publication Analysis

Top Keywords

chitosan films
12
films
11
films loaded
8
treatment malignant
8
malignant pleural
8
pleural mesothelioma
8
hyaluronate-based films
8
drug release
8
drug delivery
8
delivery systems
8

Similar Publications

Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications.

Int J Biol Macromol

December 2024

Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:

Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.

View Article and Find Full Text PDF

Preparation of poly(l-lactic acid) antibacterial film based on surface grafting of modified chitosan and its preservation effect on chilled beef.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China. Electronic address:

Chilled beef is a perishable food product. Due to the broad-spectrum antimicrobial properties of chitosan, and the biodegradability of PLLA, chitosan and PLLA are introduced double bonding groups to obtain Chitosan-graft-Glycidyl methacrylate (Cs-g-GMA) and Poly(L-lactic acid)-co-poly(butylene itaconate) (PLBI), respectively. Cs-g-GMA is then grafted onto the surface of PLBI films by UV curing to produce PLBI/Cs-g-GMA films with non-migratory, broad-spectrum antimicrobial, biodegradable, and possess good oxygen barrier properties, compared to current antimicrobial films.

View Article and Find Full Text PDF

Synthesis of an antimicrobial chitosan film impregnated with ZnO nanoparticles phytosynthesized with Ruta graveolens plant extract.

Microb Pathog

December 2024

Tecnológico Nacional de México / Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, Av. Tecnológico S/N Col. Agrícola Bellavista, Metepec, México, C.P. 52149.

In this study, biopolymer of chitosan-based films were synthesized, which were impregnated with zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 1, 5 and 10 % w:v to obtain a film with microbicide properties and non-toxic for humans. The ZnO NPs were phytosynthesized with ethanolic extract of Ruta graveolens, by UV-Vis spectrophotometry and Tauc equation were estimated their Band gap energy=3.37 eV at wavelength of 302 nm.

View Article and Find Full Text PDF

The pervasive use of petroleum-based food packaging has caused significant ecological damage due to their unsustainability and non-biodegradability. Polysaccharide-based biodegradable materials are promising alternatives, but low hydrophobicity and functional properties limit their practical applications which can be overcome by incorporation of phytochemical(s). Therefore, by leveraging the strong antioxidant and antibacterial potential of pterostilbene (PTB), we have developed PTB nanoemulsion (NE) incorporated chitosan/sodium alginate (CS/SA) film for food packaging applications.

View Article and Find Full Text PDF

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!