Chronic lymphocytic leukemia (CLL) has a high incidence and a steeply growing prevalence in the Western world. The heterogeneity of the disease necessitates individual mapping of biology and predicted drug response in each patient as basis for administration of tailored treatments. Cell signaling aberrations may serve as biological indicators for suitable therapy. By applying phospho-specific flow cytometry, we mapped basal and induced phosphorylation levels of 20 phospho-epitopes on proteins relevant to B-cell signaling in B cells from 22 CLL patients and 25 normal controls. The signaling response of the cytostatic drugs fludarabine, doxorubicin and vincristine was also investigated. CLL cells exerted similar or lower basal phosphorylation levels compared to normal B cells, with the exception of STAT3 (pY705) which was increased. Interestingly, STAT3 inhibitors normalized the STAT3 (pY705) level and reduced cell viability. Vincristine treatment significantly modulated phosphorylation levels in CLL cells, while no effect was observed in controls or after fludarabine or doxorubicin treatment. After BCR stimulation, CLL cells showed a tendency towards impaired phosphorylation levels, significant for several of the analyzed proteins. However, the level of Akt (pS473) was more potently induced in unmutated CLL (UM-CLL) patient samples and was significantly higher than in M-CLL samples. Importantly, the PI3Kδ inhibitor idelalisib potently reversed the effect of anti-IgM on Akt (pS473). Thus, signaling aberrations could be identified by phosphoflow cytometry and aberrant signaling could be normalized by small molecule drugs. This approach can identify relevant drug targets as well as drug effects in the individual patient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823631 | PMC |
http://dx.doi.org/10.18632/oncotarget.23949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!