The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood. On the basis of phosphorylation sites, we distinguished a sequence in the C-terminal domain of occludin as a regulatory motif (ORM). Deletion of ORM and expression of a deletion mutant of occludin in renal and intestinal epithelia reduced the mobility of occludin at the TJs. ORM deletion attenuated Ca depletion, osmotic stress and hydrogen peroxide-induced disruption of TJs, AJs and the cytoskeleton. The double point mutations T403A/T404A, but not T403D/T404D, in occludin mimicked the effects of ORM deletion on occludin mobility and AJC disruption by Ca depletion. Both Y398A/Y402A and Y398D/Y402D double point mutations partially blocked AJC disruption. Expression of a deletion mutant of occludin attenuated collective cell migration in the renal and intestinal epithelia. Overall, this study reveals the role of ORM and its phosphorylation in occludin mobility, AJC dynamics and epithelial cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963837PMC
http://dx.doi.org/10.1242/jcs.206789DOI Listing

Publication Analysis

Top Keywords

orm deletion
12
occludin
9
c-terminal domain
8
domain occludin
8
dynamics epithelial
8
expression deletion
8
deletion mutant
8
mutant occludin
8
renal intestinal
8
intestinal epithelia
8

Similar Publications

Orm proteins control ceramide synthesis and endocytosis via LCB-mediated Ypk1 regulation.

J Lipid Res

December 2024

Department of Medicine, Stony Brook University, Stony Brook, NY; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY. Electronic address:

Sphingolipids (SPLs) are major components of cell membranes with significant functions. Their production is a highly-regulated multi-step process with the formation of two major intermediates, long chain bases (LCBs) and ceramides. Homologous Orm proteins in both yeast and mammals negatively regulate LCB production by inhibiting serine palmitoyltransferase (SPT), the first enzyme in SPL de novo synthesis.

View Article and Find Full Text PDF

There are presently no acknowledged therapeutic targets or official drugs for the treatment of muscle fatigue. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is expressed in skeletal muscle, with an unknown role in muscle endurance. Here, we try to explore whether α7nAChR could act as a potential therapeutic target for the treatment of muscle fatigue.

View Article and Find Full Text PDF

Deletion of ORM2 Causes Oleic Acid-Induced Growth Defects in Saccharomyces cerevisiae.

Appl Biochem Biotechnol

October 2023

Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, 620 024, Tamil Nadu, India.

The endoplasmic reticulum (ER) resident proteins of the Orm family (Orm1p and Orm2p) play an essential regulatory role in sphingolipid metabolism and proteostasis of Saccharomyces cerevisiae. Sphingolipid metabolism and its relationship with yeast ORM1 and ORM2 have been studied widely, but its position in phospholipids and neutral lipids requires further studies. We found that the deletion of ORM2 reduced phospholipid levels, but orm1Δ had shown no significant alteration of phospholipids.

View Article and Find Full Text PDF

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!