A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subcutaneous cefazolin to reduce surgical site infections in a porcine model. | LitMetric

Subcutaneous cefazolin to reduce surgical site infections in a porcine model.

J Surg Res

Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California; Division of Pediatric Surgery, Department of Surgery, Stanford University, Stanford, California. Electronic address:

Published: April 2018

Background: Surgical site infections (SSIs) pose a significant health and financial burden. A key aspect of appropriate prophylaxis is the administration of antibiotics intravenously (IV). However, subcutaneous administration of antibiotics is not well described in the literature. During surgery, we hypothesize that subcutaneous injection may provide better protection against SSIs. To better understand the kinetics after subcutaneous injection, we describe the serum concentrations of cefazolin in a porcine model.

Materials And Methods: Juvenile mini-Yucatan pigs were administered 20 mL of 25 mg/kg cefazolin subcutaneously, and serial blood samples were taken for 3 h. Blood samples were analyzed for cefazolin concentration using chromatography. Pharmacokinetic data were calculated based on the blood serum concentrations.

Results: Maximum serum concentrations of cefazolin were achieved 42.6 ± 2.0 min after the time of injection and were found to be 18.8 ± 7.4 μg/mL. The elimination rate constant was 0.0033 ± 0.0016 min and the half-life was 266 ± 149 min. The area under the curve was 4940 ± 1030 μg × min/mL. The relative bioavailability of subcutaneous injection was 95% +5%/-20%.

Conclusions: Subcutaneous administration of cefazolin achieves a significantly lower maximum serum concentration than IV injection. As a result, higher doses of antibiotic can be injected locally without incurring systemic toxicity. Subcutaneous administration will therefore result in higher concentrations of antibiotic for a longer time at the incision site compared with standard IV administration. This strategy of antibiotic delivery may be more effective in preventing SSIs. Further studies are needed to detail the exact effect of subcutaneous antibiotic injection on SSI rates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2017.11.056DOI Listing

Publication Analysis

Top Keywords

subcutaneous administration
12
subcutaneous injection
12
subcutaneous
8
surgical site
8
site infections
8
administration antibiotics
8
serum concentrations
8
concentrations cefazolin
8
blood samples
8
maximum serum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!