Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humov.2018.02.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!