A FRET-based biosensor for measuring Gα13 activation in single cells.

PLoS One

Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands.

Published: July 2018

Förster Resonance Energy Transfer (FRET) provides a way to directly observe the activation of heterotrimeric G-proteins by G-protein coupled receptors (GPCRs). To this end, FRET based biosensors are made, employing heterotrimeric G-protein subunits tagged with fluorescent proteins. These FRET based biosensors complement existing, indirect, ways to observe GPCR activation. Here we report on the insertion of mTurquoise2 at several sites in the human Gα13 subunit, aiming to develop a FRET-based Gα13 activation biosensor. Three fluorescently tagged Gα13 variants were found to be functional based on i) plasma membrane localization and ii) ability to recruit p115-RhoGEF upon activation of the LPA2 receptor. The tagged Gα13 subunits were used as FRET donor and combined with cp173Venus fused to the Gγ2 subunit, as the acceptor. We constructed Gα13 biosensors by generating a single plasmid that produces Gα13-mTurquoise2, Gβ1 and cp173Venus-Gγ2. The Gα13 activation biosensors showed a rapid and robust response when used in primary human endothelial cells that were exposed to thrombin, triggering endogenous protease activated receptors (PARs). This response was efficiently inhibited by the RGS domain of p115-RhoGEF and from the biosensor data we inferred that this is due to GAP activity. Finally, we demonstrated that the Gα13 sensor can be used to dissect heterotrimeric G-protein coupling efficiency in single living cells. We conclude that the Gα13 biosensor is a valuable tool for live-cell measurements that probe spatiotemporal aspects of Gα13 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837189PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193705PLOS

Publication Analysis

Top Keywords

gα13 activation
16
gα13
10
fret based
8
based biosensors
8
heterotrimeric g-protein
8
tagged gα13
8
activation
7
fret-based biosensor
4
biosensor measuring
4
measuring gα13
4

Similar Publications

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.

View Article and Find Full Text PDF

Background: Vancomycin, an antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), is frequently included in empiric treatment for community-acquired pneumonia (CAP) despite the fact that MRSA is rarely implicated in CAP. Conducting polymerase chain reaction (PCR) testing on nasal swabs to identify the presence of MRSA colonization has been proposed as an antimicrobial stewardship intervention to reduce the use of vancomycin. Observational studies have shown reductions in vancomycin use after implementation of MRSA colonization testing, and this approach has been adopted by CAP guidelines.

View Article and Find Full Text PDF

The relationship between information literacy and online learning engagement: a moderated mediating model.

BMC Psychol

December 2024

Mental Health Education and Counseling Center, Nanchang Hangkong University, 696, Fenghe South Avenue, Nanchang, 330063, China.

Purpose: This study aims to examine how college students' information literacy affects their online learning engagement and what factors contribute to this relationship.

Method: The research adopted the method of cluster sampling to deliver a questionnaire survey to a sample of 1421 students' representative of four colleges. Information Literacy Scale, Online Learning Engagement Scale, Information Literacy Self-Efficacy Scale, and Psychological Resilience Scale were utilized in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!