Fabrication of large area, multiscale microtextured surfaces engineered for antiadhesion properties remains a challenge. Compared to an elastic surface, viscoelastic solids show much higher surface stickiness, tack, and adhesion owing to the increased contact area and energy dissipation. Here, we show a simple, low cost, large-area and high throughput method with roll-to-roll compatibility to fabricate multiscale, rough microstructures resistant to adhesion in a viscoelastic layer by controlled tearing of viscous film. Even a high adhesive strength viscoelastic solid layer, such as partially cured PDMS, is made nonsticky simply by its controlled tearing. The torn surface shows a fracture induced, self-organized leaflike micropattern resistant to sticking. The topography and adhesion strength of these structures are readily tuned by changing the tearing speed and the film thickness. The microtexture displays a springlike recovery, low adhesive strength, and easy release properties even under the high applied loads.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b04389DOI Listing

Publication Analysis

Top Keywords

controlled tearing
8
adhesive strength
8
making nonsticky
4
nonsticky surfaces
4
surfaces sticky
4
sticky materials
4
materials self-organized
4
self-organized microtexturing
4
viscoelastic
4
microtexturing viscoelastic
4

Similar Publications

Background/objectives: Dry eye disease (DED) significantly impairs quality of life, affecting physical, social, and psychological well-being, as well as reducing workplace productivity. While lutein and zeaxanthin supplements have been shown to improve ocular health, existing research often overlooks the efficacy of lower dosages and shorter durations of supplementation. This study investigated the effects of combined supplementation with lutein, zeaxanthin, and elderberries in 110 voluntary participants through a randomized controlled trial.

View Article and Find Full Text PDF

A double-blind, randomized, and controlled clinical trial with therapeutic intervention was performed at a university hospital in Rio de Janeiro to evaluate whether the addition of Hayne oleoresin to a carboxypolymethylene hydrogel is more effective in skin tear healing than standard treatment. The sample consisted of 84 patients, predominantly men, with a mean age of 67.37 years.

View Article and Find Full Text PDF

Objective: To compare the safety profiles of biportal endoscopic spinal surgery (BESS) and microscopic spinal surgery (MSS) for lumbar disc herniation and spinal stenosis by analyzing the associated adverse events.

Methods: We pooled data from 2 prospective randomized controlled trials involving 220 patients (110 in each group) who underwent single-level lumbar surgery. Participants aged 20-80 years with radiating pain due to lumbar disc herniation or spinal stenosis were included in this study.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Background: Primary acquired nasolacrimal duct obstruction (PANDO) is a condition in which tear ducts are blocked, leading to epiphora and dacryocystitis. This systematic review and meta-analysis aimed to measure the ability of transcanalicular dacryocystorhinostomy (TC-DCR) as an alternative approach to PANDO compared to traditional external dacryocystorhinostomy (EX-DCR).

Methods: Our search included Embase, Medline, and the Cochrane Central Register of Controlled Trials (CENTRAL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!