Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review.

J Clin Oncol

Jason D. Merker and Maximilian Diehn, Stanford University School of Medicine; Stanford, CA; Geoffrey R. Oxnard, Dana Farber Cancer Institute and Harvard Medical School; Neal Lindeman, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Carolyn Compton, Arizona State University, Tempe, AZ; Patricia Hurley, Richard L. Schilsky, Thomas K. Oliver, and Suanna S. Bruinooge, American Society of Clinical Oncology, Alexandria, VA; Alexander J. Lazar and Apostolia M. Tsimberidou, The University of Texas MD Anderson Cancer Center, Houston, TX; Christina M. Lockwood, University of Washington, Seattle, WA; Alex J. Rai, Columbia University Medical Center, New York, NY; Patricia Vasalos and Brooke L. Billman, College of American Pathologists, Northfield, IL; Daniel F. Hayes, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; and Nicholas C. Turner, Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom.

Published: June 2018

Purpose Clinical use of analytical tests to assess genomic variants in circulating tumor DNA (ctDNA) is increasing. This joint review from ASCO and the College of American Pathologists summarizes current information about clinical ctDNA assays and provides a framework for future research. Methods An Expert Panel conducted a literature review on the use of ctDNA assays for solid tumors, including pre-analytical variables, analytical validity, interpretation and reporting, and clinical validity and utility. Results The literature search identified 1,338 references. Of those, 390, plus 31 references supplied by the Expert Panel, were selected for full-text review. There were 77 articles selected for inclusion. Conclusion The evidence indicates that testing for ctDNA is optimally performed on plasma collected in cell stabilization or EDTA tubes, with EDTA tubes processed within 6 hours of collection. Some ctDNA assays have demonstrated clinical validity and utility with certain types of advanced cancer; however, there is insufficient evidence of clinical validity and utility for the majority of ctDNA assays in advanced cancer. Evidence shows discordance between the results of ctDNA assays and genotyping tumor specimens and supports tumor tissue genotyping to confirm undetected results from ctDNA tests. There is no evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, treatment monitoring, or residual disease detection. There is no evidence of clinical validity and clinical utility to suggest that ctDNA assays are useful for cancer screening, outside of a clinical trial. Given the rapid pace of research, re-evaluation of the literature will shortly be required, along with the development of tools and guidance for clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2017.76.8671DOI Listing

Publication Analysis

Top Keywords

ctdna assays
28
clinical validity
20
evidence clinical
16
clinical
12
validity utility
12
ctdna
10
circulating tumor
8
tumor dna
8
college american
8
american pathologists
8

Similar Publications

Emergence of Circulating Tumor DNA as a Precision Biomarker in Lung Cancer Radiation Oncology and Beyond.

Hematol Oncol Clin North Am

December 2024

Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Electronic address:

Circulating tumor DNA (ctDNA) is emerging as a transformative biomarker in the management of non-small cell lung cancer (NSCLC). This review focuses on its role in detecting minimal residual disease (MRD), predicting treatment response, and guiding therapeutic decision-making in radiation oncology and immunotherapy. Key studies demonstrate ctDNA's prognostic value, particularly in identifying relapse risk and refining patient stratification for curative-intent and consolidative treatments.

View Article and Find Full Text PDF

Extensive methylation analysis of circulating tumor DNA in plasma of patients with gastric cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan.

DNA methylation is known to be involved in tumor progression. This is the first study to perform an extensive methylation analysis of plasma circulating tumor DNA (ctDNA) using targeted bisulfite sequencing in gastric cancer (GC) patients to evaluate the usefulness of ctDNA methylation as a new biomarker. Sixteen patients who received chemotherapy for recurrent GC were included.

View Article and Find Full Text PDF

Importance: Serial circulating tumor DNA (ctDNA) has emerged as a routine surveillance strategy for patients with resected colorectal cancer, but how serial ctDNA monitoring is associated with potential curative outcomes has not been formally assessed.

Objective: To examine whether there is a benefit of adding serial ctDNA assays to standard-of-care imaging surveillance for potential curative outcomes in patients with resected colorectal cancer.

Design, Setting, And Participants: In this single-center (City of Hope Comprehensive Cancer Center, Duarte, California), retrospective, case cohort study, patients with stage II to IV colorectal cancer underwent curative resection and were monitored with serial ctDNA assay and National Cancer Center Network (NCCN)-guided imaging surveillance from September 20, 2019, to April 3, 2024.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

Toripalimab plus chemotherapy for first line treatment of advanced non-small cell lung cancer (CHOICE-01): final OS and biomarker exploration of a randomized, double-blind, phase 3 trial.

Signal Transduct Target Ther

December 2024

State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

A randomized double-blind phase 3 trial (CHOICE-01, NCT03856411) demonstrated that combining toripalimab with chemotherapy substantially improves progression-free survival (PFS) in advanced non-small cell lung cancer (NSCLC) patients without pretreatment. This study presents the prespecified final analysis of overall survival (OS) and biomarkers utilizing circulating tumor DNA (ctDNA) and tissue-based sequencing. Additionally, the analysis revealed a higher median overall survival (OS, 23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!