Light-Responsive Shape: From Micrometer-Long Nanocylinders to Compact Particles in Electrostatic Self-Assembly.

Macromol Rapid Commun

Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany.

Published: September 2018

A light-triggered shape change of supramolecular nanostructures is achieved through electrostatically self-assembly of linear polyelectrolytes and oppositely charged dyes in aqueous solution: Upon UV-irradiation, 1-µm-long, flexible cylinders with a cross-section of 10 nm convert into ellipsoids of 400 nm × 40 nm. The nano-object shape is encoded in the molecular dye structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201700860DOI Listing

Publication Analysis

Top Keywords

light-responsive shape
4
shape micrometer-long
4
micrometer-long nanocylinders
4
nanocylinders compact
4
compact particles
4
particles electrostatic
4
electrostatic self-assembly
4
self-assembly light-triggered
4
light-triggered shape
4
shape change
4

Similar Publications

Bacterial infections can lead to severe complications that adversely affect wound healing. Thus, the development of effective wound dressings has become a major focus in the biomedical field, as current solutions remain insufficient for treating complex, particularly chronic wounds. Designing an optimal environment for healing and tissue regeneration is essential.

View Article and Find Full Text PDF

Soft actuators are limited by single-mode driving technology, which poses challenges in dealing with complex and multidimensional movements. In this study, a multiresponsive soft actuator was fabricated by integrating a microwrinkling structure into an MXene-based film, enabling programmable motions. To achieve this, we introduced -hexane into the film preparation process and utilized its rapid volatilization to accelerate the shrinkage difference between the film and the substrate.

View Article and Find Full Text PDF

Aim: To investigate the biocompatibility and bacterial adhesion properties of light responsive materials (LRM) and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses (AIOLs).

Methods: Employing fundamental experimental research techniques, LRM with human lens epithelial cells (hLECs) and human retinal pigment epithelium cells (ARPE-19 cells) were co-cultured. Commercially available intraocular lenses (IOLs) were used as controls to perform cell counting kit-8 (CCK-8), cell staining under varying light intensities, cell adhesion and bacterial adhesion experiments.

View Article and Find Full Text PDF

Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope.

Nat Commun

December 2024

Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland.

In the field of tissue engineering, achieving precise spatiotemporal control over engineered cells is critical for sculpting functional 2D cell cultures into intricate morphological shapes. In this study, we engineer light-responsive mammalian cells and target them with dynamic light patterns to realize 2D cell culture patterning control. To achieve this, we developed μPatternScope (μPS), a modular framework for software-controlled projection of high-resolution light patterns onto microscope samples.

View Article and Find Full Text PDF

Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!