A 2 × 2 factorial arrangement (rearing room with or without pad-fan cooling × diet with or without 2.5 kg/t organic acid) was used to evaluate the effect of pad-fan cooling and dietary organic acid supplementation during perinatal period on reproductive performance and antioxidant status of sows in hot weather. This study was conducted in a subtropical city in Guangdong Province in South China between August and October, 2015. At day 85 of gestation, a total of 112 sows were randomly assigned to the four treatments with 28 sows per treatment, and maintained until day 21 of lactation, and the feeding trial lasted for 51 days. During the experimental period, room temperature and humidity were recorded hourly. The lactation feed intake of sows (P = 0.109) and stillbirths (P < 0.05) increased when the sows were reared in the room with the pad-fan cooling against the room without pad-fan cooling. The number of weak newborns per litter and the malondialdehyde content in days 14 and 21 milk decreased (P < 0.05), while the lactation feed intake of sows, weaned litter weights, and individual pig weights increased when the sows were fed the organic acid (P < 0.05). In conclusion, pad-fan cooling in rearing room improved the lactation feed intake of sows, and dietary organic acid supplementation improved reproductive performance and milk antioxidant status of sows. Pad-fan cooling is recommended in farrowing room, but not in gestating room.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-018-1520-zDOI Listing

Publication Analysis

Top Keywords

organic acid
12
pad-fan cooling
8
cooling dietary
8
dietary organic
8
acid supplementation
8
reproductive performance
8
performance antioxidant
8
antioxidant status
8
sows hot
8
hot weather
8

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Interactions between iron mineral and low-molecular-weight organic acids accelerated nitrogen conversion and release in lake sediments.

Water Res

January 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China. Electronic address:

Endogenous nitrogen (N) release from lake sediments is one of main causes affecting water quality, which can be affected by the presence of iron (Fe) minerals and organic matter, especially low-molecular-weight organic acids (LMWOAs). Although these substances always coexist in sediments, their interaction effect on N fate is not yet clear. In this study, the role and mechanisms of the coexistence of iron mineral (ferrihydrite, Fh) and LMWOAs, i.

View Article and Find Full Text PDF

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction.

J Hazard Mater

January 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.

The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.

View Article and Find Full Text PDF

Degradation of anthracene and phenanthrene by strain Streptomyces sp. M-1 and its application in the treatment of PAHs-contaminated water.

J Environ Manage

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China. Electronic address:

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants with mutagenicity, carcinogenicity and teratogenicity, widely distributed in the environment. Effective biodegradation of PAHs is highly required, especially in wastewater. An efficient PAHs degrading strain Streptomyces sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!