In this work, we explore the use of electrochemical methods (i.e., impedance) along with the arsenic-specific aptamer (ArsSApt) to fabricate and study the interfacial properties of an arsenic (As(III)) sensor. The ArsSApt layer was self-assembled on a gold substrate, and upon binding of As(III), a detectable change in the impedimetric signal was recorded because of conformational changes at the interfacial layer. These interfacial changes are linearly correlated with the concentration of arsenic present in the system. This target-induced signal was utilized for the selective detection of As(III) with a linear dynamic range of 0.05-10 ppm and minimum detectable concentrations of ca. 0.8 μM. The proposed system proved to be successful mainly because of the combination of a highly sensitive electrochemical platform and the recognized specificity of the ArsSApt toward its target molecule. Also, the interaction between the ArsSApt and the target molecule (i.e., arsenic) was explored in depth. The obtained results in this work are aimed at proving the development of a simple and environmentally benign sensor for the detection of As(III) as well as in elucidating the possible interactions between the ArsSApt and arsenic molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830693PMC
http://dx.doi.org/10.1021/acsomega.7b01710DOI Listing

Publication Analysis

Top Keywords

interfacial properties
8
detection asiii
8
arssapt target
8
target molecule
8
arssapt
5
aptamer-based impedimetric
4
impedimetric assay
4
assay arsenite
4
arsenite water
4
interfacial
4

Similar Publications

Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.

View Article and Find Full Text PDF

Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device's performance.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

In this study, we demonstrate that a highly efficient colorimetric sensor prepared from carbon-shielded Co-Ce Prussian blue analog (PBA) nanopetals (CoO/CeO@C) by green chemical deposition method and thermal annealing processes for detection of ascorbic acid (AA) in cerebral microdialysis fluids. The synthesized CoO/CeO@C showed high dual-mimetic activity, i.e.

View Article and Find Full Text PDF

Nanofiltration (NF) membranes offer tremendous potential in wastewater reuse, desalination, and resource recovery to alleviate water scarcity and environmental contamination. However, separating micropollutants and charged ions from wastewater while maintaining high water permeation remains challenging for conventional NF membranes. Customizing diffusion and interaction behavior of monomers at membrane-forming interfaces is promising for regulating interior pore structures and surface morphology properties for polyamide NF membranes, reaching efficient screening and retaining of solutes from water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!