Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. plants were set up in the glasshouse, inoculated or not with , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820414PMC
http://dx.doi.org/10.3389/fpls.2018.00154DOI Listing

Publication Analysis

Top Keywords

substrate water
20
water
17
hydraulic conductivity
16
substrate
13
water retention
12
water flow
8
transpiration limitation
8
substrate moisture
8
moisture retention
8
plant water
8

Similar Publications

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

The development and generation of affordable and highly efficient energy, particularly hydrogen, are one of the best approaches to address the challenges posed by the depletion of non-renewable energy sources. Hydrogen energy, as a green and ecosystem-friendly source with zero carbon emission, can be generated through various methods, including water splitting (HER/OER) either photo- or electrocatalytic reactions. To implement these reactions effectively in practical applications, it is highly desirable to develop extremely efficient and cost-effective catalytic materials that are comparable to contemporary catalysts.

View Article and Find Full Text PDF

The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules.

View Article and Find Full Text PDF

Rapid detection of hydrogen peroxide and nitrite in adulterated cow milk using enzymatic and nonenzymatic methods on a reusable platform.

RSC Adv

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District Hyderabad 500078 India

Cow milk is readily adulterated due to its complex properties that can emulsify many adulterants. Among the commonly used adulterants in cow milk are hydrogen peroxide (HP) and nitrite. Commercially available HP is added to extend cow milk's shelf life, while nitrite enters through the tap or pond water added to increase cow milk's volume.

View Article and Find Full Text PDF

Hibernation is a crucial aspect of the life history of freshwater turtles inhabiting temperate regions. Therefore, understanding their hibernation habitat selection is essential for the targeted conservation of turtle species and their habitats. The Chinese softshell turtle (), a medium-sized freshwater turtle, is widely distributed in China; however, populations are rapidly declining, and threatened by habitat destruction, overfishing, and water pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!