https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=29503521&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2950352120240722
1083-61602222018Feb16Organic process research & developmentOrg Process Res DevMicroflow High-p,T Intensification of Vitamin D3 Synthesis Using an Ultraviolet Lamp.147155147-15510.1021/acs.oprd.7b00318Herewith a new process concept for synthesis is presented which combines both UV-photoirradiation and high-p,T intensification (photo-high-p,T) in continuous flow. The application of this procedure to Vitamin D3 synthesis promotes thermal shifting of the equilibrium from the reaction intermediate to the product. This is enabled by microreactors which allow operation under harsh conditions such as the high temperature used here. This provides, to our best knowledge, a new kind of process combination (novel process window). As a result, in less than 1 min, 42% conversion of 7-dehydrocholesterol can be achieved giving a 17% yield and 40% selectivity of Vitamin D3. This approach enhances productivity by up to 2 orders of magnitude compared with the current capillary based vitamin D3 synthesis, because, under the microflow conditions, photochemistry can be performed at fairly high concentration and up to 20 times faster.Escribà-GelonchMarcMMicro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.NoëlTimothyTMicro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.HesselVolkerVMicro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.engJournal ArticleReview20171220
United StatesOrg Process Res Dev98904431083-6160The authors declare no competing financial interest.
20171082018366020183660201836612018227ppublish29503521PMC582871010.1021/acs.oprd.7b00318Lee S. L.; O’Connor T. F.; Yang X.; et al. Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191.10.1007/s12247-015-9215-8.10.1007/s12247-015-9215-8Mascia S.; Heider P. L.; Zhang H.; et al. End-to-End Continuous Manufacturing of Pharmaceuticals: Integrated Synthesis, Purification, and Final Dosage Formation. Angew. Chem., Int. Ed. 2013, 52, 12359.10.1002/anie.201305429.10.1002/anie.20130542924115355Plutschack M. B.; Pieber B.; Gilmore K.; Seeberger P. H. The Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117, 11796.10.1021/acs.chemrev.7b00183.10.1021/acs.chemrev.7b0018328570059Hessel V.; Kralisch D.; Kockmann N.; et al. Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. ChemSusChem 2013, 6, 746.10.1002/cssc.201200766.10.1002/cssc.20120076623606410Hessel V.; Kralisch D.; Kockmann N. In Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes; Wiley-VCH: Weinheim, 2015.Maessen P. A.; Jacobs H. J.C.; Cornelisse J.; Havinga E. Studies on vitamin D and related compounds. Part 30. Photochemistry of previtamin D3 at 92 K. Formation of unstable tachysterin3 rotamers. Angew. Chem. 1983, 95, 752.10.1002/ange.19830950928.10.1002/ange.19830950928Noël T.; Escriba-Gelonch M.; Huvaere K.. Industrial Photochemistry: From Laboratory Scale to Industrial Scale. In Photochemical Processes in Continuous-Flow Reactors; World Scientific Publishing: 2016. ISBN: 978-1-78634-218-8.Dauben W. G.; Disanayaka B.; Funhoff D. J. H.; et al. Polyene 21Ag and 11Bu states and the photochemistry of previtamin D3. J. Am. Chem. Soc. 1991, 113, 8367.10.1021/ja00022a025.10.1021/ja00022a025Dmitrenko O. G.; Serikov A. A.; Terenetskaya I. P. Model analysis of branching photoreactions with conformationally flexible intermediate. J. Photochem. Photobiol., A 1996, 96, 7.10.1016/1010-6030(95)04277-6.10.1016/1010-6030(95)04277-6Gottfried N.; Kasier W. Ultrafast electrocyclic ring opening in previtamin D photochemistry. Chem. Phys. Lett. 1984, 110, 335.10.1016/0009-2614(84)85437-8.10.1016/0009-2614(84)85437-8Boomsman F.; Jacobs H. J. C.; Havinga E.; et al. Studies on vitamin D and related compounds XXIV new irradiation products of previtamin D3. Toxisterols. Tetrahedron Lett. 1975, 16, 427.10.1016/S0040-4039(00)71884-3.10.1016/S0040-4039(00)71884-3Posner G. H.; Kahraman M. Organic chemistry of vitamin D analogues (deltanoids). Eur. J. Org. Chem. 2003, 2003, 3889.10.1002/ejoc.200300264.10.1002/ejoc.200300264Zhu G. D.; Okamura W. H. Synthesis of Vitamin D (Calciferol). Chem. Rev. 1995, 95, 1877.10.1021/cr00038a007.10.1021/cr00038a007Thompson J. N.Trace analysis of vitamins by liquid chromatography. In Trace Analysis, Vol. 2; Elsevier: 1982. ISBN: 978-0-12-682102-4.Fukuyama T.; Rahman T.; Sato M.; Ryu I. Adventures in inner space: microflow systems for practical organic synthesis. Synlett 2008, 2008, 151.10.1055/s-2007-1000884.10.1055/s-2007-1000884Oelgemöller M. Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 2012, 35, 1144.10.1002/ceat.201200009.10.1002/ceat.201200009Su Y.; Straathof N. J. W.; Hessel V.; Noel T. Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications. Chem. - Eur. J. 2014, 20, 10562.10.1002/chem.201400283.10.1002/chem.20140028325056280Klais O.; Westphal F.; Benaissa W.; et al. Guidance on safety/health for process intensification including MS design. Part II: Explosion hazards. Chem. Eng. Technol. 2009, 32, 1966.10.1002/ceat.200900217.10.1002/ceat.200900217Kockmann N.; Thenee P.; Fleischer-Trebes C.; Laudadio G.; Noel T. Safety assessment in development and operation of modular continuous-flow processes. React. Chem. Eng. 2017, 2, 258.10.1039/C7RE00021A.10.1039/C7RE00021AVaddula B. R.; Gonzalez M. A. Flow chemistry for designing sustainable chemical synthesis. Chem. Today 2013, 31, 16.Gutmann B.; Cantillo D.; Kappe C. O. Continuous-Flow Technology-A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688.10.1002/anie.201409318.10.1002/anie.20140931825989203Hanson A. L.; Metzger L. E. Evaluation of increased vitamin D fortification in high-temperature, short-time-processed 2% milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt. J. Dairy Sci. 2010, 93, 801.10.3168/jds.2009-2694.10.3168/jds.2009-269420105553Kazmi S. A.; Vieth R.; Rousseau D. Vitamin D3 fortification and quantification in processed dairy products. Int. Dairy J. 2007, 17, 753.10.1016/j.idairyj.2006.09.009.10.1016/j.idairyj.2006.09.009Dauben W. G.; Kowalczyk B. A.; Funhoff D. J. H. Organic reactions at high pressure. Interconversion of previtamin D3 and vitamin D3. Tetrahedron Lett. 1988, 29, 3021.10.1016/0040-4039(88)85075-5.10.1016/0040-4039(88)85075-5Su Y.; Hessel V.; Noel T. A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations. AIChE J. 2015, 61, 2215.10.1002/aic.14813.10.1002/aic.14813Hessel V.; Kralisch D.; Kockmann N.; et al. Novel Process Windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 2013, 6, 746.10.1002/cssc.201200766.10.1002/cssc.20120076623606410Illg T.; Loeb P.; Hessel V. Flow chemistry using milli- and microstructured reactors-From conventional to novel process windows. Bioorg. Med. Chem. 2010, 18, 3707.10.1016/j.bmc.2010.03.073.10.1016/j.bmc.2010.03.07320418104Fuse S.; Mifune Y.; Tanabe N.; Takahashi T. Continuous-flow synthesis of activated vitamin D3 and its analogues. Org. Biomol. Chem. 2012, 10, 5205.10.1039/c2ob25511a.10.1039/c2ob25511a22588675Fuse S.; Tanabe N.; Yoshida M.; Yoshida H.; et al. Continuous-flow synthesis of vitamin D3. Chem. Commun. 2009, 46, 8722.10.1039/c0cc02239j.10.1039/c0cc02239j20877825Hessel V.; Shahbazali E.; Noel T.; Zelentsov S. The Claisen Rearrangement in Flow and Batch Processing: Mechanism Exploration and Control over Influencing Factors. Chem. Ing. Tech. 2014, 86, 2160.10.1002/cite.201400125.10.1002/cite.201400125Hessel V.; Shahbazali E.; Noel T.; Zelentsov S. The Claisen Rearrangement - Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow. ChemBioEng Rev. 2014, 1, 244.10.1002/cben.201400022.10.1002/cben.201400022Maeda H.; Nashihara S.; Mukae H.; et al. Improved efficiency and product selectivity in the photo-Claisen-type rearrangement of an aryl naphthylmethyl ether using a microreactor/flow system. Res. Chem. Intermed. 2013, 39, 301.10.1007/s11164-012-0650-6.10.1007/s11164-012-0650-6Billaud E. M. F.; Shahbazali E.; Ahamed M.; et al. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem. Sci. 2017, 8, 1251.10.1039/C6SC02933G.10.1039/C6SC02933GPMC536954728451267Cambie D.; Bottecchia C.; Straathof N. J. W.; et al. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem. Rev. 2016, 116, 10276.10.1021/acs.chemrev.5b00707.10.1021/acs.chemrev.5b0070726935706Escriba M.; Ibhadon A. Recent developments in catalytic micro process engineering for fine chemicals synthesis. Recent Pat. Catal. 2014, 2, 101.10.2174/2211548X113029990006.10.2174/2211548X113029990006Escriba M.; Hessel V.; Rothstock S.; et al. Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate. Green Chem. 2011, 13, 1799.10.1039/c0gc00655f.10.1039/c0gc00655fHu Q.; Zhang X.; Mao K.; et al. Degradation kinetic of Methyl tert-Butyl Ether (MTBE) by O3/H2O2. Zhejiang Daxue Xuebao, Lixueban. 2009, 36, 80.0Hu Q.; Wang Z.; Chen Y.; Tang X.; et al. Degradation of Methyl tert-Butyl Ether (MTBE) by UV/H2O2. Zhejiang Daxue Xuebao, Lixueban. 2006, 33, 439.Tavcar-Kalcher G.; Vengust A. Stability of vitamins in premixes. Anim. Feed Sci. Technol. 2007, 132, 148.10.1016/j.anifeedsci.2006.03.001.10.1016/j.anifeedsci.2006.03.001Angeli P.; Gavriilidis A. Hydrodynamics of Taylor flow in small channels: a review. Proc. Inst. Mech. Eng., Part C 2008, 222, 737.10.1243/09544062JMES776.10.1243/09544062JMES776Hessel V. Novel Process Windows - Gate to Maximizing Process Intensification via Flow Chemistry. Chem. Eng. Technol. 2009, 32, 1655.10.1002/ceat.200900474.10.1002/ceat.200900474