Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila.

Cell Host Microbe

School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; National Creative Research Initiative Center for Hologenomics, Seoul National University, Seoul 08826, South Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea. Electronic address:

Published: March 2018

DUOX, a member of the NADPH oxidase family, acts as the first line of defense against enteric pathogens by producing microbicidal reactive oxygen species. DUOX is activated upon enteric infection, but the mechanisms regulating DUOX activity remain incompletely understood. Using Drosophila genetic tools, we show that enteric infection results in "pro-catabolic" signaling that initiates metabolic reprogramming of enterocytes toward lipid catabolism, which ultimately governs DUOX homeostasis. Infection induces signaling cascades involving TRAF3 and kinases AMPK and WTS, which regulate TOR kinase to control the balance of lipogenesis versus lipolysis. Enhancing lipogenesis blocks DUOX activity, whereas stimulating lipolysis via ATG1-dependent lipophagy is required for DUOX activation. Drosophila with altered activity in TRAF3-AMPK/WTS-ATG1 pathway components exhibit abolished infection-induced lipolysis, reduced DUOX activation, and enhanced susceptibility to enteric infection. Thus, this work uncovers signaling cascades governing inflammation-induced metabolic reprogramming and provides insight into the pathophysiology of immune-metabolic interactions in the microbe-laden gut epithelia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2018.01.011DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
12
enteric infection
12
duox activity
8
signaling cascades
8
duox activation
8
duox
7
inflammation-modulated metabolic
4
reprogramming required
4
required duox-dependent
4
duox-dependent gut
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!