Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint.

Curr Biol

Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada. Electronic address:

Published: March 2018

Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a "prone-to-autophosphorylate" Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863767PMC
http://dx.doi.org/10.1016/j.cub.2018.02.002DOI Listing

Publication Analysis

Top Keywords

mps1
11
n-terminal extension
8
spindle assembly
8
assembly checkpoint
8
mps1 activation
8
nte
7
mps1 phosphorylates
4
phosphorylates n-terminal
4
extension relieve
4
relieve autoinhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!