Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads.

Food Chem

School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China. Electronic address:

Published: July 2018

Pectinase was immobilized onto sodium alginate/graphene oxide beads via amide bonds by using N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide as the activating agent. The immobilized pectinase was characterized by Fourier transform infrared spectra and scanning electron microscopy analyses. Immobilization conditions were optimized by Box-Behnken design and the response surface method. The activity of the immobilized pectinase prepared under optimal conditions reached 1236.86 ± 40.21 U/g, with an enzyme activity recovery of 83.5%. The optimal pH of free pectinase was 4.5, while that of immobilized pectinase was shifted to 4.0. The optimal temperature of immobilized pectinase was increased to 60 °C, which was 10 °C higher than that of free form. Furthermore, the immobilized pectinase possessed a superior thermal stability and storage stability to those of free pectinase. Reusability studies indicated that the immobilized pectinase retained 73% of initial activity after six times cycles. Due to these good properties, such immobilized pectinase may find application in food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2018.01.157DOI Listing

Publication Analysis

Top Keywords

immobilized pectinase
28
pectinase
11
immobilized
9
immobilized sodium
8
sodium alginate/graphene
8
alginate/graphene oxide
8
pectinase immobilized
8
free pectinase
8
preparation characterization
4
characterization catalytic
4

Similar Publications

pectinase was immobilized on magnetic nanoparticles coated with calcium alginate for pectin hydrolysis in guava juice by a stirred electromagnetic reactor (SER). The average crystallite size estimated by the Scherrer formula was 33.7 nm.

View Article and Find Full Text PDF

Production and immobilization of pectinases from Penicillium crustosum in magnetic core-shell nanostructures for juice clarification.

Int J Biol Macromol

April 2024

Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, Nuevo León, Mexico. Electronic address:

Global market of food enzymes is held by pectinases, mostly sourced from filamentous fungi via submerged fermentation. Given the one-time use nature of enzymes to clarify juices and wines, there is a crucial need to explore alternatives for enzyme immobilization, enabling their reuse in food applications. In this research, an isolated fungal strain (Penicillium crustosum OR889307) was evaluated as a new potential pectinase producer in submerged fermentation.

View Article and Find Full Text PDF

The use of free pectinases as clarification biocatalysts constitutes a well-established practice in the large-scale production of various types of wines. However, when in the form of free enzymes, the recovery and reusability of pectinases is difficult if not impossible. To address these limitations, the present study focuses on the noncovalent adsorption immobilization of a commercial pectinolytic preparation onto highly porous polyamide 6 (PA6) microparticles, both with and without magnetic properties, prepared via activated anionic polymerization.

View Article and Find Full Text PDF

Application of Immobilized Enzymes in Juice Clarification.

Foods

November 2023

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.

Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking.

View Article and Find Full Text PDF

Co-immobilized multi-enzyme biocatalytic system on reversible and soluble carrier for saccharification of corn straw cellulose.

Bioresour Technol

March 2024

College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Herein, three enzymes (cellulase, β-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!