This work demonstrated the synthesis and design of ultra-bright and ultra-small fluorescent nanoparticles, which were prepared by encapsulating 4-(diphenylamino)benzaldehyde (DPB) in silica cross-linked micellar nanoparticles (SCMNPs). The DPB-doped SCMNPs (DPB-SCMNPs) exhibited ultra-bright fluorescence in an aqueous medium that was 22 times brighter than that of free DPB molecules in an organic solvent. For the first time, density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were used to confirm that the enhanced brightness of the DPB-SCMNPs was due to a hydrogen bond-induced mechanism. In addition, the 3D fluorescence spectra and the Commission Internationale de L'Eclairage (CIE) diagram were employed to determine the optical properties and emission colour of the DPB-SCMNPs. Moreover, the DPB-SCMNPs were water-soluble, monodisperse and ultra-small (∼12 nm) and should be robust and stable in aqueous media and biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.02.064 | DOI Listing |
ACS Nano
December 2024
School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
2D Ruddlesden-Popper (RP) perovskites, upon inclusion of a chiral amine, exhibit chirality-induced spin selectivity (CISS). Although alloying at the halogen site in MBA-based RPs (MBA: methylbenzylammonium) is one of the suitable routes to tune the CISS effect, the mixed-halide RP perovskites exhibited complete suppression of chirality when probed through circular dichroism (CD). Here, we present the CISS effect in a series of mixed-halide RP perovskites.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous KSO system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
College of New Energy, Ningbo University of Technology, Ningbo 315336, China.
The stability of the commercial electrolyte is linked to the internal solvent molecule, particularly in enhancing the stability of these molecules. Hereby, we introduce a dual function strategy involving hydrogen bond induced solvent molecules and the in situ fabrication cathode-electrolyte interphase (CEI) to address this issue. The additive -(4-(2,5-dioxo-4-oxazolidinyl)butyl)-2,2,2-trifluoroacetamide (DOTFA), with its oxazolidinyl and trifluoroacetamide functional units, establishes hydrogen bonds with the solvent, forming CEI films on the cathode surface that enhance the antioxidation ability of the electrolyte.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China. Electronic address:
The low utilization of visible light and easy recombination of charge carriers of graphitic carbon nitride (CN) restrain its application as photo-electron donor and metal site support in photo-Fenton system. Herein, a hydrogen bond-induced supramolecular self-assembly strategy was created to fabricate an ultra-dispersed Cu-loaded porous tubular CN composite (CA-Cu/TCN) by the hydrothermal-pyrolysis method with citric acid (CA) as initiator and chelating agent. CA-Cu/TCN with rich nitrogen vacancies (NVs) and abundant ultra-dispersed CuN sites exhibited narrow bandgap, favorable visible light absorption capability, and high separation and transfer efficiency of charge carriers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China.
Circularly polarized luminescence (CPL) has numerous applications in optical data storage, quantum computing, bioresponsive imaging, liquid crystal displays, and backlights in three-dimensional (3D) displays. In addition to their competitive optical properties, carbon dots (CDs) benefit from simple and low-cost preparation, facile post-modification, and excellent resistance to photo- and chemical bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!