Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deficiency or altered composition of stratum corneum (SC) lipids such as ceramides (CERs), causing skin barrier dysfunction and skin dryness, have been associated with skin diseases such as atopic dermatitis and psoriasis, and ageing. Replenishing the depleted native CERs with exogenous CERs has also been shown to have beneficial effects in restoring the skin barrier. Phyto-derived CERs such as oat CERs were shown to be potential for skin barrier reinforcement. To effect this, however, the oat CERs should overcome the SC barrier and delivered deep into the lipid matrix using the various novel formulations. In an attempt to demonstrate the potential use of oat CERs, lecithin-based microemulsions (MEs) and starch-based nanoparticles (NPs) were formulated and characterized. Besides, ME gel and NP gel were also prepared using Carbopol®980 as a gelling agent. The in vitro release and penetration (using artificial four-layer membrane system) and ex vivo permeation (using excised human skin) of oat CERs from the various formulations were investigated. The results revealed ME enhanced the in vitro release and penetration oat CERs compared to the other formulations. On the other hand, the NPs retarded the release of oat CERs and small quantities of oat CERs incorporated into NP gel penetrated into the deeper layers of the multilayer membranes. The penetration-enhancing effect of ME was also observed in the ex vivo permeation studies where significant quantities of oat CERs were found in the acceptor compartment. Compared to the ME, the ME gel exhibited reduced depth and extent of oat CERs permeation. As compared to NP gel, ME gel enhanced the degree of permeation of oat CERs into the deeper layer of the skin. Generally the gel formulations were effective in concentrating oat CERs in the SC where they are needed to be.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2018.02.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!