Traditionally most protein ingredients are sold as a powder due to transport ease and longer shelf life. Many high-protein powder ingredients such as milk protein concentrate with 85% protein and micellar casein concentrate have poor rehydration properties (e.g., solubility) after storage, which might limit their use. An alternative to the production of dried protein ingredients is the option to use liquid protein ingredients, which saves the cost of spray drying, but may also improve flavor and offer different functional properties. The objective of this study was to determine the effect of spray drying on the flavor and functionality of high-protein ingredients. Liquid and dried protein ingredients (whey protein concentrate with 80% protein, whey protein isolate, milk protein concentrate with 85% protein, and micellar casein concentrate) were manufactured from the same lot of milk at the North Carolina State University pilot plant. Functional differences were evaluated by measurement of foam stability and heat stability. Heat stability was evaluated by heating at 90°C for 0, 10, 20, and 30 min followed by micro-bicinchoninic acid and turbidity loss measurements. Sensory properties were evaluated by descriptive analysis, and volatile compounds were evaluated by gas chromatography-mass spectrometry. No differences were detected in protein heat stability between liquids and powders when spray dried under these conditions. Whey protein concentrate with 80% protein (liquid or spray dried) did not produce a foam. All powders had higher aroma intensity and cooked flavors compared with liquids. Powder proteins also had low but distinct cardboard flavor concurrent with higher relative abundance of volatile aldehydes compared with liquids. An understanding of how spray drying affects both flavor and functionality may help food processors better use the ingredients they have available to them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-13780 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!