A compact and low-cost laser induced fluorescence detector with silicon based photodetector assembly for capillary flow systems.

Talanta

Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. Electronic address:

Published: May 2018

A compact and low-cost laser induced fluorescence (LIF) detector based on confocal structure for capillary flow systems was developed and applied for analysis of Her2 protein on single Hela cells. A low-power and low-cost 450 nm laser diode (LD) instead of a high quality laser was used as excitation light source. A compact optical design together with shortened optical path length improved the optical efficiency and detection sensitivity. A superior silicon based photodetector assembly was used for fluorescence detection instead of a photomultiplier (PMT). The limit of detection (LOD) for fluorescein sodium was 3 × 10 M or 165 fluorescein molecules in detection volume measured on a homemade capillary electroosmotic driven (EOD)-LIF system, which was similar to commercial LIFs. Compared to commercial LIFs, the whole volume of our LIF was reduced to 1/2-1/3, and the cost was less than 1/3 of them.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.01.076DOI Listing

Publication Analysis

Top Keywords

compact low-cost
8
low-cost laser
8
laser induced
8
induced fluorescence
8
silicon based
8
based photodetector
8
photodetector assembly
8
capillary flow
8
flow systems
8
commercial lifs
8

Similar Publications

Interest in carbon dioxide (CO) sensors is growing rapidly due to the increasing awareness of the link between air quality and health. Indoor, high CO levels signal poor ventilation, and outdoor the burning of fossil fuels and its associated pollution. CO gas sensors based on integrated optical waveguides are a promising solution due to their excellent gas sensing selectivity, compact size, and potential for mass manufacturing large volumes at low cost.

View Article and Find Full Text PDF

A high-performance polarization stabilizer is highly desirable for many fields, such as optical communication, optical remote sensing, and optical measurement systems. It should simultaneously feature high tracking speed, compact size, low insertion loss, and low cost. Here, we experimentally demonstrate an integrated polarization stabilizer based on thin-film lithium niobate (TFLN) photonics and look-up table (LUT) method.

View Article and Find Full Text PDF

Significance: Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements.

Aim: We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system.

View Article and Find Full Text PDF

Structural fatigue can lead to catastrophic failures in various engineering applications and must be properly monitored and effectively managed. This paper provides a state-of-the-art review of recent developments in structural fatigue monitoring using piezoelectric-based sensors. Compared to alternative sensing technologies, piezoelectric sensors offer distinct advantages, including compact size, lightweight design, low cost, flexible formats, and high sensitivity to dynamic loads.

View Article and Find Full Text PDF

Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!