Flux decline due to membrane fouling by surfactant micelles is the major problem limiting the use of micellar enhanced ultrafiltration (MEUF) for the treatment of wastewater. Understanding of underlying mechanisms of membrane fouling, adsorption kinetics and adsorption isotherm are very important for the successful application of MEUF studies. In the present study, an unsteady state model considering sequential occurrence of complete pore blocking and gel layer formation was proposed for explaining flux decline behavior during rhamnolipid based MEUF for simultaneous removal of Cd and p-cresol from aqueous solution under batch concentration mode. The model was developed based on the Hermia's complete pore blocking model and resistance-in-series model coupled with gel layer theory incorporating the effects of feed temperature, variation of viscosity and retentate concentration with time, and pressure dependent mass transfer coefficient. A good agreement between the experimental data and model predictions was demonstrated. The effects of operating conditions were found to have a significant effect on the flux decline behavior and onset of gel layer formation. The use of ultrafiltration membrane for the study of adsorption kinetics and adsorption isotherm was demonstrated. Kinetic studies disclosed that both Cd and p-cresol adsorption was better described by the pseudo-second order model for both single and binary solution. The results of isotherm studies revealed that adsorption of both Cd and p-cresol was spontaneous in nature and equilibrium data was best fitted by Langmuir model with the maximum adsorption capacity of RHL vesicles of 208.33 and 53.27 mg g for Cd and p-cresol, respectively at 299 K. The model parameters of membrane fouling, adsorption kinetics and adsorption isotherm evaluated in this study could be useful in designing and scale up of RHL based MEUF process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.02.069DOI Listing

Publication Analysis

Top Keywords

flux decline
16
adsorption kinetics
16
membrane fouling
12
kinetics adsorption
12
adsorption isotherm
12
gel layer
12
adsorption
10
simultaneous removal
8
removal p-cresol
8
isotherm studies
8

Similar Publications

Background: Rhabdomyolysis is frequently associated with acute kidney injury (AKI). Due to the nephrotoxic properties of myoglobin, its rapid removal is relevant. If kidney replacement therapy (KRT) is necessary for AKI, a procedure with effective myoglobin elimination should be preferred.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Alcohol consumption is believed to affect Alzheimer's disease (AD) risk, but the contributing mechanisms are not well understood. A potential mediator of the proposed alcohol-AD connection is autophagy, a degradation pathway that maintains organelle and protein homeostasis. Autophagy is regulated through the activity of Transcription factor EB (TFEB), which promotes lysosome and autophagy-related gene expression.

View Article and Find Full Text PDF

The significant role of vegetation activity in regulating wetland methane emission in China.

Environ Res

January 2025

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of 15 Sciences, Daxing'anling, 165200, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China. Electronic address:

Accurate quantifying of methane (CH) emissions is a critical aspect of current research on regional carbon budgets. However, due to limitations in observational data, research methodologies, and an incomplete understanding of process mechanisms, significant uncertainties persist in the assessment of wetland CH fluxes in China. In this study, we developed a machine learning model by integrating measured CH fluxes with related environmental data to produce a high-resolution (1 km) dataset of CH fluxes from China's wetlands for the period 2000-2020.

View Article and Find Full Text PDF

Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!