The posterior superior alveolar (PSA) block is one of many techniques used to provide profound anesthesia for invasive dental procedures. This technique has a long history, with a high success rate, but is not without complication risks. The purpose of this study was to determine if pulpal anesthesia of the maxillary second molar could be achieved using a posterior superior alveolar block with a reduced depth of penetration of 10 mm compared to the current suggested depth of 16 mm. Using a cold refrigerant, a thermal test was conducted using the buccal surface of a maxillary second molar of 43 participants. Positive neural responses were obtained from 100% of the participants (n=43) during the pretest. Each participant received a posterior superior alveolar block using a short (20mm), 27-gauge needle with the penetration depth reduced to 10mm. Post-test neural responses of these molars were evaluated using same cold thermal test technique. Study results demonstrated that the reduced depth technique for the PSA block was successful in 88% (n=38) of the participants; pulpal anesthesia of the maxillary second molar had been achieved. Furthermore, there were zero positive aspirations and zero hematomas observed in the participants. The reduced needle depth technique showed promise in achieving desired results of pulpal anesthesia coupled with decreasing risk and complications associated with the PSA block. Additional blinded, randomized clinical studies are recommended to achieve evidence-based support for this reduced depth PSA block technique.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reduced depth
16
posterior superior
16
superior alveolar
16
psa block
16
depth technique
12
alveolar block
12
pulpal anesthesia
12
maxillary second
12
second molar
12
anesthesia maxillary
8

Similar Publications

Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.

View Article and Find Full Text PDF

Mode-informed complex-valued neural processes for matched field processing.

J Acoust Soc Am

January 2025

School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

A complex-valued neural process method, combined with modal depth functions (MDFs) of the ocean waveguide, is proposed to reconstruct the acoustic field. Neural networks are used to describe complex Gaussian processes, modeling the distribution of the acoustic field at different depths. The network parameters are optimized through a meta-learning strategy, preventing overfitting under small sample conditions (sample size equals the number of array elements) and mitigating the slow reconstruction speed of Gaussian processes (GPs), while denoising and interpolating sparsely distributed acoustic field data, generating dense field data for virtual receiver arrays.

View Article and Find Full Text PDF

The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of MFE01 strain.

J Bacteriol

January 2025

Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.

Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.

View Article and Find Full Text PDF

Design of pH-Responsive Nanomaterials Based on the Tumor Microenvironment.

Int J Nanomedicine

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People's Republic of China.

The metabolic activity of tumor cells leads to the acidification of the surrounding microenvironment, which provides new strategies for the application of nanotechnology in cancer therapy. Researchers have developed various types of pH-responsive nanomaterials based on the tumor acidic microenvironment. This review provides an in-depth discussion on the design mechanisms, drug-loading strategies, and application pathways of tumor acidic microenvironment-responsive nanodrug delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!