Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3) has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides) has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFRβ (Gint4.T), here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3) to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFRβ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862137PMC
http://dx.doi.org/10.1016/j.omtn.2017.12.021DOI Listing

Publication Analysis

Top Keywords

aptamer-sirna chimera
8
gbm cells
8
stat3
5
gbm
5
stat3 gene
4
gene silencing
4
silencing aptamer-sirna
4
chimera selective
4
selective therapeutic
4
therapeutic glioblastoma
4

Similar Publications

Androgen deprivation therapy has been the primary treatment strategy for advanced prostate cancer (PCa). But most patients develop castration resistance over time. For FDA-approved second-generation androgen receptor (AR) antagonists, including enzalutamide (ENZ) and abiraterone (AA), patients who initially respond to them eventually develop resistance.

View Article and Find Full Text PDF

Combination therapy has become the most important treatment for advanced non-small cell lung cancer (NSCLC), which can significantly improve the prognosis of patients. However, poor targeting and adverse reactions limited its clinical application. Here, we constructed an AS1411 aptamer-programmed cell death ligand-1 (PD-L1) siRNA chimera/polyethylenimine/glutamine/β-cyclodextrin/doxorubicin (Chimera/ PEI/Gln/β-CD/DOX) nanoparticle for the combination therapy (chemotherapy combined with immunotherapy).

View Article and Find Full Text PDF

RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites.

View Article and Find Full Text PDF

Malignant pleural effusion is one of the most common complications of advanced lung cancer and there is no effective clinical treatment at present. Here, we constructed an aptamer-siRNA chimeras/PEI/PEG/gold nanoparticle (AuNP)/collagen membrane that can progressively activate T cells by layer by layer assembly. Electron microscope showed this collagen membrane could be divided into 10 layers with a total thickness of 50-80μm, and AuNPs could be observed.

View Article and Find Full Text PDF

Aptamers as Theragnostic Tools in Prostate Cancer.

Biomolecules

July 2022

Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico.

Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!