AI Article Synopsis

  • Heart failure can result from various cardiovascular issues, and while microRNAs play a role, the specific ones involved are not fully identified.
  • Researchers analyzed miR-25 levels in different heart disease patients and found that its expression initially decreases but later increases in severe heart failure.
  • The study suggests that manipulating miR-25 can lead to significant changes in heart function and blood pressure, revealing its potential impact and importance in understanding heart failure progression.

Article Abstract

Heart failure arises from diverse cardiovascular diseases, including hypertension, ischemic disease and atherosclerosis, valvular insufficiency, myocarditis, and contractile protein mutations. MicroRNAs are dysregulated in heart failure, but identification of the specific microRNAs involved remains incomplete. Here, we evaluate miR-25 expression in the peripheral blood from healthy, dilated cardiomyopathy (DCM), remote infarct (OMI), hypertensive heart disease (HHD), and HHD resulting in heart failure (HHDF) using q-PCR. Interestingly, we discovered miR-25 expression in humans is initially decreased at the onset of heart failure but is later increased in end-stage heart failure. We also show that overexpression of miR-25 in normal mice causes cardiomyocyte fibrosis and apoptosis. However, inhibition of miR-25 in normal mice led to activate renin-angiotensin system (RAS) and high blood pressure, mild heart dilation. Notably, the miR-25 cluster knock-out mice was also characterized high blood pressure and no obvious cardiac function alteration. RNA sequencing showed the alteration of miR-25 target genes in angomir-treated mice, including the renin secretion signal related gene. In vitro, cotransfection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the Pde3a and Cacnalc untranslated region. In summary, miR-25 expression during different stages of heart disease, offers a new perspective for the role of miR-25 function in heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.02.029DOI Listing

Publication Analysis

Top Keywords

heart failure
24
mir-25 expression
12
heart
9
mir-25
9
cardiac function
8
renin secretion
8
heart disease
8
mir-25 normal
8
normal mice
8
high blood
8

Similar Publications

Background: The impact of iron deficiency on COPD morbidity independent of anemia status is unknown. Understanding the association between iron deficiency, anemia status, and risk of hospitalization in COPD may inform an approach to these comorbidities.

Study Design And Methods: Adults ≥40 years from the Johns Hopkins COPD Precision Medicine Center of Excellence data repository with an outpatient iron profile and 1 year of subsequent follow-up time were included in the study.

View Article and Find Full Text PDF

chitinase-like protein orchestrates cyst wall glycosylation to facilitate effector export and cyst turnover.

Proc Natl Acad Sci U S A

February 2025

Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.

bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!