Many cell membranes of living organisms can be represented as phospholipid bilayers immersed into a water environment. The physical-chemical interactions at the membranes/water interface are responsible for the stabilization of the membranes. In addition, the drug efficiency, the pharmaceutical mechanism and the improvement of the drug design can be addressed to the interactions between the membranes-water interface with the drug and to the membrane-drug interface. In this framework, it is important to find membranes models able to simulate and simultaneously simplify the biological systems to better understand both physical and chemical interactions at the interface level. Dimyristoylphosphatidylcholine (DMPC) is a synthetic phospholipid used in order to make Multilamellar Vesicle (MLV), Large Unilamellar Vesicle (LUV) and Giant Unilamellar Vesicle (GUV). In order to understand the mechanisms of vesicle formation, we have analyzed mixtures of DMPC and water by micro-Raman spectroscopy at different temperatures in the range between 10 and 35 °C. Particularly, we analyzed the temperature dependence of the CN vibrational frequency, which appears well correlated to the order degree of the various phases. These investigations, beyond the determination of phospholipid hydrocarbon chains order, provide information about the conformation of the lipid membranes. We have identified the mixture of DMPC/water that is best suited for Raman studies and can be used as an in-vitro model for biological systems. A peculiar frequency shift across the transition gel-ripple-liquid crystalline phases has been proposed as a useful diagnostic marker to detect the "order degree" and subsequently the phases of biomimetic membranes made by DMPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2018.02.021 | DOI Listing |
Mil Med
January 2025
Department of Rheumatology, VA Medical Center Memphis, TN 38104, USA.
Introduction: Patients with chronic inflammatory diseases are often treated with pharmacologic therapies that target the immune system and have an increased risk of infection. These risks can be reduced by vaccination against common pathogens. This quality improvement project aimed to increase pneumococcal and herpes zoster vaccination rates in patients with chronic inflammatory disease on biologic immunosuppressive therapy.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection.
View Article and Find Full Text PDFChaos
January 2025
School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!