Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aaaea9 | DOI Listing |
J Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.
View Article and Find Full Text PDFACS Omega
January 2025
Departamento de Física - Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Volta Redonda, Rio de janeiro 27213-145,Brazil.
Ketene dithioacetals have significant applications in various fields, including natural products, pharmaceuticals, agrochemicals, and corrosion inhibitors. These compounds are highly valued for their reactivity and ability to participate in a wide range of organic syntheses. In this context, the reaction between 1,3-diaminopropan-2-ol and 1,1-bismethylsulfanyl-2-nitroethylene has been studied experimentally and theoretically by using density functional theory (DFT) calculations.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Laboratoire d'Imagerie Biomédicale (LIB), Institut National de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Sorbonne Université, Paris, France.
Atrial fibrillation (AF) is characterized by rapid and irregular contraction of the left atrium (LA). Impacting LA haemodynamics, this increases the risk of thrombi development and stroke. Flow conditions preceding stroke in these patients are not well defined, partly due the limited resolution of 4D flow magnetic resonance imaging (MRI).
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
Magnetization switching by charge current without a magnetic field is essential for device applications and information technology. It generally requires a current-induced out-of-plane spin polarization beyond the capability of conventional ferromagnet/heavy-metal systems, where the current-induced spin polarization aligns in-plane orthogonal to the in-plane charge current and out-of-plane spin current. Here, a new approach is demonstrated for magnetic-field-free switching by fabricating a van-der-Waals magnet and oxide FeGeTe/SrTiO heterostructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!