Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inclusion of solvent effects in the theoretical analysis of molecular processes becomes increasingly important. Currently, it is not feasible to directly include the solvent on the quantum level. We use an Ehrenfest approach to study the coupled time evolution of quantum dynamically treated solutes and classical solvents system. The classical dynamics of the solvent is coupled to the wavepacket dynamics of the solute and rotational and translational degrees of freedom of the solute are included classically. This allows quantum dynamics simulations for ultrafast processes that are decided by environment interactions without explicit separation of time scales. We show the application to the dissociation of ICN in liquid Ar as a proof of principal system and to the more applied example of uracil in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b10372 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!