Background: Asthma is a chronic inflammatory disease in which inflammatory responses have the polarisation of CD4 T cells to Th2 cells. Dental follicle mesenchymal stem cells (DFSCs) have strong anti-inflammatory properties comparable to other mesenchymal stem cells.
Objective: We investigated the immunomodulatory effects of DFSCs on CD4 T helper cell responses of asthmatic patients and compared the results with those obtained with asthmatic subjects on immunotherapy and with healthy individuals.
Method: Peripheral blood mononuclear cells (PBMC) were isolated from immunotherapy naïve asthmatics, asthmatics on subcutaneous Der p1 immunotherapy and from healthy individuals. PBMC were pre-conditioned with anti-CD3/anti-CD28 mAbs, Der p1 or IFN-γ in the presence and absence of DFSCs and analysed for T cell viability and proliferation, CD4 CD25 FOXP3 regulatory T cell frequencies, cytokine expression, and GATA3, T bet and FoxP3 expressions. Neutralisation of TGF-β and blockade of IDO and PGE2 pathways were performed to determine suppressive signalling pathways of DFSCs.
Results: Dental follicle mesenchymal stem cells suppressed proliferative responses of CD4 T lymphocytes and increased the frequency of Treg cells. DFSCs decreased effector and effector memory CD4 T cell phenotypes in favour of naïve T cell markers. DFSCs decreased IL-4 and GATA3 expression and increased IFN-γ, T-bet and IL-10 expression in asthmatics. Costimulatory molecules were suppressed in monocytes with DFSCs in the cocultures. DFSCs down-regulated inflammatory responses via IDO and TGF-β pathways in asthmatic patients.
Conclusion: Dental follicle mesenchymal stem cells suppressed allergen-induced Th2-cell polarisation in favour of Th1 responses and attenuated antigen-presenting cell co-stimulatory activities. These studies suggest that DFSC-based cell therapy may provide pro-tolerogenic immunomodulation relevant to allergic diseases such as asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cea.13126 | DOI Listing |
Cytotherapy
December 2024
Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Technology Innovation Center of Oral Health, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China. Electronic address:
Objective: This study aimed to evaluate the potential of combining allogeneic adipose-derived mesenchymal stem cells (ADSCs) with autologous concentrated growth factors (CGF) to enhance the repair of mandibular defects in rabbits.
Methods: Rabbit ADSCs were characterized using flow cytometry, identifying CD73, CD90, and CD105 as surface markers, while Alizarin Red Staining confirmed osteogenic differentiation, showing substantial mineralized deposits by day 21. A total of 24 New Zealand white rabbits were divided into four groups: BLANK (control group), CGF, ADSCs, and ADSCs/CGF.
Pharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Pharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFPharmaceutics
November 2024
Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan.
Extracellular vesicles (EVs), including exosomes, are promising pharmaceutical modalities. They are purified from cell culture supernatant; however, the preparation may contain EVs with the desired therapeutic effects and different types of EVs, lipoproteins, and soluble proteins. Evaluating the composition of particulate impurities and the levels of protein impurities in final preparations is critical for quality control.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Additive Technologies Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!