Rab geranylgeranyl transferase (RGGT) is an interesting therapeutic target, as it ensures proper functioning of Rab GTPases, a class of enzymes responsible for the regulation of vesicle trafficking. Relying on our previous studies, we synthesized a set of new α-phosphonocarboxylic acids as potential RGGT inhibitors, with emphasis on the elaboration of imidazole-containing analogues. We identified two compounds with activity similar to that of previously reported RGGT inhibitors, showing structural similarity to imidazo[1,2-a]pyridine-containing analogues in terms of their substitution pattern. Interestingly, analogues of the N-series, derived from another phosphonocarboxylate RGGT inhibitor, 2-fluoro-3-(1H-imidazol-1-yl)-2-phosphonopropanoic acid, turned out to be inactive in our model, indicating that an additional substituent localized at positions C2 or C4 of the imidazole ring, may adversely affect the potency against the targeted enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201700791DOI Listing

Publication Analysis

Top Keywords

rab geranylgeranyl
8
geranylgeranyl transferase
8
transferase rggt
8
rggt inhibitors
8
rggt
5
synthesis biological
4
biological evaluation
4
evaluation imidazole-bearing
4
imidazole-bearing α-phosphonocarboxylates
4
α-phosphonocarboxylates inhibitors
4

Similar Publications

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in , encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of , the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown.

View Article and Find Full Text PDF

α-Amino bisphosphonate triazoles serve as GGDPS inhibitors.

Bioorg Med Chem Lett

April 2024

Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, US; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, US. Electronic address:

Depletion of cellular levels of geranylgeranyl diphosphate by inhibition of the enzyme geranylgeranyl diphosphate synthase (GGDPS) is a potential strategy for disruption of protein transport by limiting the geranylgeranylation of the Rab proteins that regulate intracellular trafficking. As such, there is interest in the development of GGDPS inhibitors for the treatment of malignancies characterized by abnormal protein production, including multiple myeloma. Our previous work has explored the structure-function relationship of a series of isoprenoid triazole bisphosphonate-based GGDPS inhibitors, with modifications having impact on enzymatic, cellular and in vivo activities.

View Article and Find Full Text PDF

Background: Currently, there is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder. Many biomarkers have been proposed, but because ALS is a clinically heterogeneous disease with an unclear etiology, biomarker discovery for ALS has been challenging due to the lack of specificity of these biomarkers. In recent years, the role of autophagy in the development and treatment of ALS has become a research hotspot.

View Article and Find Full Text PDF

Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!