Assessing hydrothermal groundwater flow path using Kohonen's SOM, geochemical data, and groundwater temperature cooling trend.

Environ Sci Pollut Res Int

Higher Institute of Water Sciences and Techniques, University of Gabes, Gabes, Tunisia.

Published: May 2018

Assessing groundwater flow path in a thermal aquifer, such as El Hamma aquifer, southeastern Tunisia, and its lateral communication with the adjacent Jeffara-Gabes aquifers, is a very complex operation which requires the integration of several approaches to understand and explain the reality of phenomenon. In this study, geochemical and isotopic data, Kohonen self-organizing map, temperature cooling trend, and kriging techniques were used to assess groundwater flow path in hydrothermal aquifer of El Hamma-Gabes, Tunisia. For this objective, 32 sampled wells are analyzed for major ions, electric conductivity, pH, total dissolved solids, and stables isotopes (δH and δO). Geochemical diagrams reveal that groundwater chemistry was controlled by evaporation, and rock-water interaction with a dominant water facies was Cl·SO-Na·Ca-Mg. Kriging techniques were used to highlight groundwater flow path. Kohonen self-organizing map shows that the waters are clustered into three classes according to chemical and isotopic composition. These clusters represent a hydrothermal groundwater class from the Continental Intercalaire aquifer, a shallow groundwater class corresponding to Jeffara-Gabes aquifer and mixed water class. Groundwater cooling trend and stable isotopes indicate that groundwater flow is toward west to east part of study area, indicating a recharge of Jeffara aquifer from El Hamma thermal aquifer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-1525-1DOI Listing

Publication Analysis

Top Keywords

groundwater flow
20
flow path
16
cooling trend
12
groundwater
10
hydrothermal groundwater
8
temperature cooling
8
thermal aquifer
8
aquifer hamma
8
kohonen self-organizing
8
self-organizing map
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!