Magnetic properties of the azafullerene Gd@CN are studied by SQUID magnetometry. The effective exchange coupling constant j between the Gd spins and the spin of unpaired electron residing on the single-electron Gd-Gd bond is determined to be 170 ± 10 cm. Low temperature AC measurements revealed field-induced millisecond-long relaxation of magnetization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5885278PMC
http://dx.doi.org/10.1039/c8cc00112jDOI Listing

Publication Analysis

Top Keywords

exchange coupling
8
relaxation magnetization
8
single-electron gd-gd
8
gd-gd bond
8
giant exchange
4
coupling field-induced
4
field-induced slow
4
slow relaxation
4
magnetization gd@cn
4
gd@cn single-electron
4

Similar Publications

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

A novel method for multi-matrix arsenic speciation analysis by anion-exchange HPLC-ICP-MS in the framework of the third (French) total diet study.

Anal Bioanal Chem

January 2025

Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700, Maisons-Alfort, France.

This study presents the development and validation of a precise analytical method for the speciation analysis of arsenic (As) compounds, including inorganic species [As(III) and As(V)] and organic species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The method employs anion-exchange high-performance liquid chromatography (AE HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). To optimize the sample preparation process, microwave-assisted extraction (MAE) and heat-assisted extraction (HAE) techniques were evaluated and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!