Background: General theory of anesthetic managements for nontransplant procedures in lung transplant patients was proposed. However, there are few literatures reporting the perioperative management of thoracoabdominal major surgery following lung transplantation in detail. Herein, we scrupulously report a perioperative management of esophagectomy in a patient who previously underwent bilateral lung transplantation (BLTx), focusing on protection of the transplanted lungs and the respiratory function of the patient.

Case Presentation: A 50-year-old woman was listed for cadaveric BLTx for severe respiratory failure due to end-stage diffuse panbronchiolitis. She underwent BLTx under veno-arterial extracorporeal membranous oxygenation support. Blood loss during the BLTx was 13,675 mL, and mild lung edema developed. She was weaned from the ventilator on the sixth postoperative day (POD) and discharged on the 65th POD. Two years after the BLTx, respiratory function improved markedly, but she was diagnosed with esophageal cancer and was scheduled for thoracoscopic esophagectomy with radical lymph node dissection, hand-assisted laparoscopic gastric mobilization, and anastomosis of the gastric conduit to the cervical esophagus via posterior mediastinum. We were concerned that impaired lymphatic drainage could cause pulmonary edema or lymphangiogenesis could cause a severe immunologic response against the lung grafts. To avoid graft injury and rejection, we addressed lung protective ventilation, reduced transfusion volume, continued immunosuppressive agents, administered volatile anesthetics, and prevented dynamic pain by epidural analgesia. These factors and the improved respiratory function may have contributed to successful management of esophagectomy. During the perioperative period, the major respiratory problems were a slight right lung edema and a persistent pulmonary air leak due to the division of thoracic adhesions, which resolved on 13th POD.

Conclusions: Cancer surgeries in lung transplant recipients become more common. When such patients undergo thoracoabdominal major surgery, we should pay special attention to respiratory function, operative stress, immunosuppressive therapy, transfusion volume for the prevention of lung edema, and thoracic adhesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818771PMC
http://dx.doi.org/10.1186/s40981-016-0041-xDOI Listing

Publication Analysis

Top Keywords

respiratory function
16
perioperative management
12
management esophagectomy
12
lung transplantation
12
lung edema
12
lung
10
esophagectomy patient
8
patient underwent
8
underwent bilateral
8
bilateral lung
8

Similar Publications

Typical waveforms used for the simulation of pressure and volume-controlled ventilation in medical ventilators have been extensively studied in the literature. The majority of simulation studies reported employ the step pattern or ramp pattern to model the pressure and flow variations in pressure/volume-controlled ventilation. It was observed that the above waveforms tend to add to the discomfort level of patients due to the presence of jerks in derivatives of pressure/flow variations; the pressure/flow variation of air and oxygen mixture should be smooth so that the patient discomfort is kept at a minimal level.

View Article and Find Full Text PDF

Characteristics of brain network after cardiopulmonary phase synchronization enhancement.

Respir Physiol Neurobiol

January 2025

Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Electronic address:

The central neural mechanism plays an important role in cardiopulmonary coupling. How the brain stem affects the cardiopulmonary coupling is relatively clear, but there are few studies on the cerebral cortex activity of cardiopulmonary coupling. We aim to study the response of the cerebral cortex for cardiopulmonary phase synchronization enhancement.

View Article and Find Full Text PDF

Pseudomonas aeruginosa T6SS secretes an oxygen-binding hemerythrin to facilitate competitive growth under microaerobic conditions.

Microbiol Res

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Pseudomonas aeruginosa is a prominent respiratory pathogen in cystic fibrosis (CF) patients, thriving in the hypoxic airway mucus. Previous studies have established the role of the oxygen-binding hemerythrin, Mhr, in enhancing P. aeruginosa's fitness under microaerobic conditions.

View Article and Find Full Text PDF

This study evaluated the use of the essential oil of Lippia origanoides (EOLO) as an anesthetic for juvenile pacu, Piaractus mesopotamicus. Two experiments were performed. In Experiment I, anesthetic induction and recovery times and ventilatory frequency (VF) were determined for fish (n= 48; 29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!