Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type.

Sci Rep

Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK.

Published: March 2018

Human noise pollution has increased markedly since the start of industrialization and there is international concern about how this may impact wildlife. Here we determined whether real motorboat noise affected the behavior, space use and escape response of a juvenile damselfish (Pomacentrus wardi) in the wild, and explored whether fish respond effectively to chemical and visual threats in the presence of two common types of motorboat noise. Noise from 30 hp 2-stroke outboard motors reduced boldness and activity of fish on habitat patches compared to ambient reef-sound controls. Fish also no longer responded to alarm odours with an antipredator response, instead increasing activity and space use, and fewer fish responded appropriately to a looming threat. In contrast, while there was a minor influence of noise from a 30 hp 4-stroke outboard on space use, there was no influence on their ability to respond to alarm odours, and no impact on their escape response. Evidence suggests that anthropogenic noise impacts the way juvenile fish assess risk, which will reduce individual fitness and survival, however, not all engine types cause major effects. This finding may give managers options by which they can reduce the impact of motorboat noise on inshore fish communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832755PMC
http://dx.doi.org/10.1038/s41598-018-22104-3DOI Listing

Publication Analysis

Top Keywords

motorboat noise
12
noise impacts
8
escape response
8
noise 30 hp
8
alarm odours
8
fish
7
noise
7
boat noise
4
impacts risk
4
risk assessment
4

Similar Publications

Anthropogenic noise pollution has been accelerating at an alarming rate, greatly altering aquatic soundscapes. Animals use various mechanisms to avoid acoustic masking in noisy environments, including altering calling rates or the frequency (pitch) of their vocalizations or increasing the amplitude (loudness) of their vocalizations (i.e.

View Article and Find Full Text PDF

Anthropogenic noise is considered one important global pollutant. The impact of noise on marine invertebrates has been less assessed. The present study evaluated the chronic effect of the motorboat noise obtained from a lagoon's soundscape, the natural habitat of the key crab Neohelice granulata, on its whole embryonic development, considering morphological and physiological carryover effects on embryos and hatched larvae.

View Article and Find Full Text PDF

Recreational boats are common in many coastal waters, yet their effects on cetaceans and other sensitive marine species remain poorly understood. To address this knowledge gap, we used drone video footage recorded from a recreational boat to quantify how harbour porpoises () responded to the boat approaching at different speeds (10 or 20 knots). Furthermore, we used a hydrophone to record boat noise levels at full bandwidth (0.

View Article and Find Full Text PDF

From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced trophic cascade.

Environ Pollut

October 2023

Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France. Electronic address:

Sound emissions from human activities represent a pervasive environmental stressor. Individual responses in terms of behaviour, physiology or anatomy are well documented but whether they propagate through nested ecological interactions to alter complex communities needs to be better understood. This is even more relevant for freshwater ecosystems that harbour a disproportionate fraction of biodiversity but receive less attention than marine and terrestrial systems.

View Article and Find Full Text PDF

Anthropogenic noise does not strengthen multiple-predator effects in a freshwater invasive fish.

J Fish Biol

June 2023

Equipe Neuro-Ethologie Sensorielle (ENES), Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université Jean Monnet - Saint-Etienne, Saint-Etienne, France.

Anthropogenic noise has the potential to alter community dynamics by modifying the strength of nested ecological interactions such as predation. Direct effects of noise on per capita predation rates have received much attention but the context in which predation occurs is often oversimplified. For instance, many animals interact with conspecifics while foraging and these nontrophic interactions can positively or negatively influence per capita predation rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!