Staphylococcus aureus can develop a small colony variant (SCV) phenotype in response to sub-lethal exposure to the biocide triclosan. In the current study, whole genome sequencing was performed and changes in virulence were investigated in five Staphylococcus aureus strains following repeated exposure to triclosan. Following exposure, 4/5 formed SCV and exhibited point mutations in the triclosan target gene fabI with 2/4 SCVs showing mutations in both fabI and fabD. The SCV phenotype was in all cases immediately reversed by nutritional supplementation with fatty acids or by repeated growth in the absence of triclosan, although fabI mutations persisted in 3/4 reverted SCVs. Virulence, determined using keratinocyte invasion and Galleria mellonella pathogenicity assays was significantly (p < 0.05) attenuated in 3/4 SCVs and in the non-SCV triclosan-adapted bacterium. Proteomic analysis revealed elevated FabI in 2/3 SCV and down-regulation in a protein associated with virulence in 1/3 SCV. In summary, attenuated keratinocyte invasion and larval virulence in triclosan-induced SCVs was associated with decreases in growth rate and virulence factor expression. Mutation occurred in fabI, which encodes the main triclosan target in all SCVs and the phenotype was reversed by fatty acid supplementation, demonstrating an association between fatty acid metabolism and triclosan-induced SCV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832852 | PMC |
http://dx.doi.org/10.1038/s41598-018-21925-6 | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Background: Methicillin-resistant (MRSA) has been an issue in healthcare since the 1960s. It was initially found only in healthcare facilities, but in the late 1990s it began to be seen with no healthcare connexion. The mechanisms of intercontinental and national spread are not fully understood, as sometimes novel outbreaks occur without any identifiable source or connexion to locally dominant clonal clusters.
View Article and Find Full Text PDFNursing home acquired pneumonia (NHAP), and its subset - aspiration-associated pneumonia, is a leading cause of morbidity and mortality among residents in long-term care facilities (LTCFs). Understanding colonization dynamics of respiratory pathogens in LTCF residents is essential for effective infection control. This study examines the longitudinal trends in prevalence, persistence, bacterial load, and co-colonization patterns of five respiratory pathogens in three LTCFs in Phoenix, Arizona.
View Article and Find Full Text PDFGastrointestinal (GI) colonization by methicillin-resistant (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced nasal carriage, skin and soft tissue infections, and bacterial sepsis.
View Article and Find Full Text PDFFront Immunol
December 2024
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!