The first crystal structure of manganese superoxide dismutase from the genus Staphylococcus.

Acta Crystallogr F Struct Biol Commun

Dexa Laboratories of Biomolecular Sciences, Jl. Industri Selatan V Blok PP No. 7, Kawasan Industri Jababeka II, Cikarang 17550, Indonesia.

Published: March 2018

A recombinant Staphylococcus equorum manganese superoxide dismutase (MnSOD) with an Asp13Arg substitution displays activity over a wide range of pH, at high temperature and in the presence of chaotropic agents, and retains 50% of its activity after irradiation with UVC for up to 45 min. Interestingly, Bacillus subtilis MnSOD does not have the same stability, despite having a closely similar primary structure and thus presumably also tertiary structure. Here, the crystal structure of S. equorum MnSOD at 1.4 Å resolution is reported that may explain these differences. The crystal belonged to space group P321, with unit-cell parameters a = 57.36, b = 57.36, c = 105.76 Å, and contained one molecule in the asymmetric unit. The symmetry operation indicates that the enzyme has a dimeric structure, as found in nature and in B. subtilis MnSOD. As expected, their overall structures are nearly identical. However, the loop connecting the helical and α/β domains of S. equorum MnSOD is shorter than that in B. subtilis MnSOD, and adopts a conformation that allows more direct water-mediated hydrogen-bond interactions between the amino-acid side chains of the first and last α-helices in the latter domain. Furthermore, S. equorum MnSOD has a slightly larger buried area compared with the dimer surface area than that in B. subtilis MnSOD, while the residues that form the interaction in the dimer-interface region are highly conserved. Thus, the stability of S. equorum MnSOD may not originate from the dimeric form alone. Furthermore, an additional water molecule was found in the active site. This allows an alternative geometry for the coordination of the Mn atom in the active site of the apo form. This is the first structure of MnSOD from the genus Staphylococcus and may provide a template for the structural study of other MnSODs from this genus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947698PMC
http://dx.doi.org/10.1107/S2053230X18001036DOI Listing

Publication Analysis

Top Keywords

subtilis mnsod
16
equorum mnsod
16
mnsod
10
crystal structure
8
manganese superoxide
8
superoxide dismutase
8
genus staphylococcus
8
active site
8
equorum
5
structure
5

Similar Publications

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux.

View Article and Find Full Text PDF

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux.

View Article and Find Full Text PDF

Additive effects of metal excess and superoxide, a highly toxic mixture in bacteria.

Microb Biotechnol

September 2020

Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.

Heavy metal contamination is a serious environmental problem. Understanding the toxicity mechanisms may allow to lower concentration of metals in the metal-based antimicrobial treatments of crops, and reduce metal content in soil and groundwater. Here, we investigate the interplay between metal efflux systems and the superoxide dismutase (SOD) in the purple bacterium Rubrivivax gelatinosus and other bacteria through analysis of the impact of metal accumulation.

View Article and Find Full Text PDF

The first crystal structure of manganese superoxide dismutase from the genus Staphylococcus.

Acta Crystallogr F Struct Biol Commun

March 2018

Dexa Laboratories of Biomolecular Sciences, Jl. Industri Selatan V Blok PP No. 7, Kawasan Industri Jababeka II, Cikarang 17550, Indonesia.

A recombinant Staphylococcus equorum manganese superoxide dismutase (MnSOD) with an Asp13Arg substitution displays activity over a wide range of pH, at high temperature and in the presence of chaotropic agents, and retains 50% of its activity after irradiation with UVC for up to 45 min. Interestingly, Bacillus subtilis MnSOD does not have the same stability, despite having a closely similar primary structure and thus presumably also tertiary structure. Here, the crystal structure of S.

View Article and Find Full Text PDF

This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!