The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328376 | PMC |
http://dx.doi.org/10.1126/science.aaq1739 | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.
The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, Engineering Faculty, Düzce University, Düzce, Turkey.
The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.
View Article and Find Full Text PDFSci Rep
December 2024
Shaanxi Key Laboratory of Complex System Control and Intelligent Informantion Processing, Xi'an University of Technology, Xi'an 710048, China.
In the integrated radar and communication system (IRCS), the design of signal that can simultaneously satisfy the radar detection and communication transmission is very important and difficult. Recently, some new properties of a class of solvable chaotic system have been studied for wireless applications, such as low bit error rate (BER) wireless communications and low cost target detection. In this paper, a novel IRCS based on the chaotic signal is proposed, and the performance of proposed scheme is analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Computational & Data Sciences, Washington University in St. Louis, St. Louis, MO, USA.
Context shapes how we perceive choices and, therefore, how we decide between them. For instance, a large body of literature on the "framing effect" demonstrates that people become more risk-seeking when choices are framed in terms of losses. Despite this research, it remains unknown how people make choices between contexts and how these choices affect subsequent decision making.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!