Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ.

J Cell Biol

Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China

Published: April 2018

Precise control of mesenchymal stem cell (MSC) differentiation is critical for tissue development and regeneration. We show here that kindlin-2 is a key determinant of MSC fate decision. Depletion of kindlin-2 in MSCs is sufficient to induce adipogenesis and inhibit osteogenesis in vitro and in vivo. Mechanistically, kindlin-2 regulates MSC differentiation through controlling YAP1/TAZ at both the transcript and protein levels. Kindlin-2 physically associates with myosin light-chain kinase in response to mechanical cues of cell microenvironment and intracellular signaling events and promotes myosin light-chain phosphorylation. Loss of kindlin-2 inhibits RhoA activation and reduces myosin light-chain phosphorylation, stress fiber formation, and focal adhesion assembly, resulting in increased Ser127 phosphorylation, nuclear exclusion, and ubiquitin ligase atrophin-1 interacting protein 4-mediated degradation of YAP1/TAZ. Our findings reveal a novel kindlin-2 signaling axis that senses the mechanical cues of cell microenvironment and controls MSC fate decision, and they suggest a new strategy to regulate MSC differentiation, tissue repair, and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881491PMC
http://dx.doi.org/10.1083/jcb.201612177DOI Listing

Publication Analysis

Top Keywords

msc differentiation
12
myosin light-chain
12
kindlin-2 regulates
8
mesenchymal stem
8
stem cell
8
msc fate
8
fate decision
8
mechanical cues
8
cues cell
8
cell microenvironment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!