Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model.

Spine J

Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, 200 W Lake St, Fort Collins, CO 80523, USA.

Published: July 2018

Background Context: There is significant variability in the materials commonly used for interbody cages in spine surgery. It is theorized that three-dimensional (3D)-printed interbody cages using porous titanium material can provide more consistent bone ingrowth and biological fixation.

Purpose: The purpose of this study was to provide an evidence-based approach to decision-making regarding interbody materials for spinal fusion.

Study Design: A comparative animal study was performed.

Methods: A skeletally mature ovine lumbar fusion model was used for this study. Interbody fusions were performed at L2-L3 and L4-L5 in 27 mature sheep using three different interbody cages (ie, polyetheretherketone [PEEK], plasma sprayed porous titanium-coated PEEK [PSP], and 3D-printed porous titanium alloy cage [PTA]). Non-destructive kinematic testing was performed in the three primary directions of motion. The specimens were then analyzed using micro-computed tomography (µ-CT); quantitative measures of the bony fusion were performed. Histomorphometric analyses were also performed in the sagittal plane through the interbody device. Outcome parameters were compared between cage designs and time points.

Results: Flexion-extension range of motion (ROM) was statistically reduced for the PTA group compared with the PEEK cages at 16 weeks (p-value=.02). Only the PTA cages demonstrated a statistically significant decrease in ROM and increase in stiffness across all three loading directions between the 8-week and 16-week sacrifice time points (p-value≤.01). Micro-CT data demonstrated significantly greater total bone volume within the graft window for the PTA cages at both 8 weeks and 16 weeks compared with the PEEK cages (p-value<.01).

Conclusions: A direct comparison of interbody implants demonstrates significant and measurable differences in biomechanical, µ-CT, and histologic performance in an ovine model. The 3D-printed porous titanium interbody cage resulted in statistically significant reductions in ROM, increases in the bone ingrowth profile, as well as average construct stiffness compared with PEEK and PSP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388616PMC
http://dx.doi.org/10.1016/j.spinee.2018.02.018DOI Listing

Publication Analysis

Top Keywords

porous titanium
12
interbody cages
12
3d-printed porous
8
titanium alloy
8
ovine lumbar
8
lumbar fusion
8
fusion model
8
compared peek
8
peek cages
8
cages weeks
8

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF
Article Synopsis
  • Cage subsidence can negatively affect lumbar fusion procedures, with material selection (PEEK vs. 3D-Ti) influencing this issue; the study aims to compare their subsidence rates.
  • The systematic search reviewed 265 patients from three high-quality studies, focusing on cage subsidence and classified subsidence rates using a specific method.
  • Results indicated that 3D-Ti cages have a significantly lower rate of subsidence compared to PEEK cages, with less severe subsidence and better overall performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!