The aim of this study was to identify the biological characteristics and functions of a putative Trichinella spiralis glutathione S-transferase (TspGST). The results of real-time PCR and immunofluorescent test (IFT) showed that the TspGST gene was expressed at all of T. spiralis different developmental stages (muscle larvae, intestinal infective larvae, adult worms and newborn larvae). When anti-rTspGST serum, mouse infection serum, and pre-immune serum were added to the medium, the inhibition rate of the larvae penetrated into the intestinal epithelial cells (IECs) was 25.72%, 49.55%, and 4.51%, respectively (P < 0.01). The inhibition of anti-rTspGST serum on larval invasion of IECs was dose-dependent (P < 0.05). Anti-rTspGST antibodies killed T. spiralis newborn larvae by an ADCC-mediated mechanism. Our results showed that the TspGST seemed to be an indispensable protein for T. spiralis invasion, growth and survival in host.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exppara.2018.02.005 | DOI Listing |
J Appl Microbiol
January 2025
Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.
Methods And Results: C.
J Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Çanakkale Onsekiz Mart University, School of Graduate Studies, Çanakkale, Turkey. Electronic address:
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFeOMNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFeOMNPs (1, 10, 100 mg/L) both individually and with TMX.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan. Electronic address:
Endosulfan (ESN) is an organophosphate insecticidal agent that is documented to induce various organ toxicities. Genistein (GEN) is a plant derived polyphenolic compound with excellent biological as well as pharmacological properties. This research was planned to assess the palliative potential of GEN to avert ENS prompted colonic toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!