Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity.

Prog Neuropsychopharmacol Biol Psychiatry

Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, F-91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Department of Developmental and Stem Cell Biology, Institut Pasteur and CNRS UMR3738, 25 rue du Dr Roux, 75015 Paris, France. Electronic address:

Published: June 2018

Polymorphisms in the gene coding for the adhesion G-protein coupled receptor LPHN3 are a risk factor for attention-deficit/hyperactivity disorder (ADHD). Transient down-regulation of latrophilin3.1 (lphn3.1), the zebrafish LPHN3 homologue, causes hyperactivity. Zebrafish injected with a lphn3.1-specific morpholino are hyperactive and display an impairment in dopaminergic neuron development. In the present study we used lphn3.1 morphants to further characterize the changes to dopaminergic signaling that trigger hyperactivity. We applied dopamine agonists (Apomorphine, Quinpirole, SKF-38393) and antagonists (Haloperidol, Eticlopride, SCH-23390) to Lphn3.1 morpholino-injected or control-injected animals. The percentage of change in locomotor activity was then determined at three different time periods (10-20 min, 30-40 min and 60-70 min). Our results show that drugs targeting dopamine receptors appear to elicit similar effects on locomotion in zebrafish larvae and mammals. In addition, we observed that lphn3.1 morphants have an overall hyposensitivity to dopamine agonists and antagonists compared to control fish. These results are compatible with a model whereby dopaminergic neurotransmission is saturated in lphn3.1 morphants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912797PMC
http://dx.doi.org/10.1016/j.pnpbp.2018.02.010DOI Listing

Publication Analysis

Top Keywords

lphn31 morphants
12
dopaminergic signaling
8
dopamine agonists
8
lphn31
6
pharmacological analysis
4
zebrafish
4
analysis zebrafish
4
zebrafish lphn31
4
lphn31 morphant
4
morphant larvae
4

Similar Publications

Kif15 regulates Coro1a cell migration and phagocytosis in zebrafish after spinal cord injury.

Int Immunopharmacol

December 2024

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong Jiangsu 226001, China. Electronic address:

The role of immune cells is crucial in nerve regeneration following spinal cord injury. Kif15, a member of the kinesin family, has been shown to enhance macrophage phagocytosis. This study investigates the impact of Kif15 deficiency on immune cells in zebrafish with spinal cord injury.

View Article and Find Full Text PDF

Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.

View Article and Find Full Text PDF

Knockdown Induces Obesity and AHO Features in Early Zebrafish Larvae.

Int J Mol Sci

November 2024

Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar.

(Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in , resulting in Gα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity.

View Article and Find Full Text PDF

Riboflavin transporter deficiency (RTD) is a rare and progressive neurodegenerative disease resulting from the disruption of RFVT2- and RFVT3- mediated riboflavin transport caused by biallelic mutations in SLC52A2 and SLC52A3, respectively. The resulting impaired mitochondrial metabolism leads to sensorimotor neurodegeneration and symptoms including muscle weakness, respiratory difficulty, and sensorineural deafness. Although over 70% of patients with RTD improve following high-dose riboflavin supplementation, remaining patients either stabilise or continue to deteriorate.

View Article and Find Full Text PDF

Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!