Generation of variation and a modified mean fitness principle: Necessity is the mother of genetic invention.

Theor Popul Biol

Department of Biology, Stanford University, Stanford, CA, United States. Electronic address:

Published: September 2018

Generation of variation may be detrimental in well-adapted populations evolving under constant selection. In a constant environment, genetic modifiers that reduce the rate at which variation is generated by processes such as mutation and migration, succeed. However, departures from this reduction principle have been demonstrated. Here we analyze a general model of evolution under constant selection where the rate at which variation is generated depends on the individual. We find that if a modifier allele increases the rate at which individuals of below-average fitness generate variation, then it will increase in frequency and increase the population mean fitness. This principle applies to phenomena such as stress-induced mutagenesis and condition-dependent dispersal, and exemplifies "Necessity is the mother of genetic invention."

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tpb.2018.02.004DOI Listing

Publication Analysis

Top Keywords

generation variation
8
fitness principle
8
mother genetic
8
constant selection
8
rate variation
8
variation generated
8
variation modified
4
modified fitness
4
principle necessity
4
necessity mother
4

Similar Publications

Background: The idea of making science more accessible to nonscientists has prompted health researchers to involve patients and the public more actively in their research. This sometimes involves writing a plain language summary (PLS), a short summary intended to make research findings accessible to nonspecialists. However, whether PLSs satisfy the basic requirements of accessible language is unclear.

View Article and Find Full Text PDF

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.

View Article and Find Full Text PDF

X-ray Nanoimaging of a Heterogeneous Structural Phase Transition in VO.

Nano Lett

January 2025

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!